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Abstract

This paper suggests a new semi-parametric multivariate approach to seasonal ad-

justment. The primary innovation is to use a large dimensional factor model of cross

section dependence to estimate the trend component in the seasonal decomposition of

each time series. Because the trend component is speci�ed to capture covariation be-

tween the time series, common changes in the level of the time series are accommodated

in the trend, and not in the seasonal component, of the decomposition. The seasonal

components are thus less prone to distortion resulting from severe business cycle �uc-

tuations than univariate �lter-based seasonal adjustment methods. We illustrate these

points this using a dataset that spans the 2007-2009 recession in the US.
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1 Introduction

The potential distortionary e¤ects of the 2007-2009 recession (or �Great Recession�) on

seasonally-adjusted data has received signi�cant academic, political and media attention

(The White House, 2013, Bialik, 2012; Goldstein, 2013). If not properly accounted for in a

seasonal adjustment method, the severe decline in US economic activity over late 2008 and

early 2009 can be interpreted as a change in seasonal patterns1, leading seasonally adjusted

data to be spuriously strong in the �rst and fourth quarters, and spuriously weak in the

second and third quarters (see, e.g., Institute of Supply Management, 2012; Federal Reserve

Board, 2011; Feroli, 2012). To mitigate the e¤ect of the recession, much of the seasonally-

adjusted data published by statistical agencies were subjected to a so-called �intervention�,

whereby the default seasonal adjustment method is manually altered by the analyst (see,

e.g., Federal Reserve Board, 2011; Kropf and Hudson 2012). Although various commentators

speculate that published economic data was distorted in the wake of the recession (Furth

and Sherk, 2013), studies suggest that main economic indicators such and employment and

GDP have not been distorted due to the appropriate application of analyst interventions

(Kropf and Hudson 2012; Evans and Tiller, 2012; Macroeconomic Advisors, 2012).

Motivated by this ongoing debate, in this paper we consider a new �multivariate� ap-

proach to seasonal adjustment that is less prone to the potentially distortionary impacts of

severe business cycle �uctuations. Conventional seasonal adjustment factors are typically

estimated using the past history of an individual time series. Popular examples of these

�univariate� approaches to seasonal adjustment include �lter-based methods, such as X-

11, X-11-ARIMA, X-12-ARIMA and X-13-ARIMA-SEATS, as well as model-based methods

such as TRAMO-SEATS. Under the �multivariate�approach a large cross section of time

series are modelled jointly for the purpose of estimating seasonal e¤ects for each individual

time series.2

The multivariate approach incorporates many of the elements of the univariate �lter-

based methods. However, the primary di¤erence between the multivariate and the univariate

approaches is the conceptual treatment of the stochastic trend in the modeling framework.

Because many time series are non-stationary or exhibit substantial persistency, time series

must �rst be de-trended before estimating the seasonal components used to adjust the data.

Under a �lter-based univariate approach the trend is estimated based on the individual time

1Real GDP fell more than 7 percent at an annual rate over the fourth quarter of 2008 and the �rst quarter

of 2009, and total nonfarm payroll employment plunged by more than 4 million jobs from September 2008

to March 2009.
2�Seasonal e¤ects�or �seasonal components�are often referred to as �seasonal adjustment factors�. We

use the term �factors� in reference to the common factor model embedded in the multivariate seasonal

decomposition.
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series under consideration, typically by smoothing the time series using a moving average

�lter. (See �gure 1 below for an example of a basic smoothed trend.) Under the multivariate

approach, the �tted stochastic trend captures both the long term variation in the time series

as well as the high frequency covariation between the cross section of time series. This

is achieved using a �exible parametric model of cross section dependence, speci�cally an

approximate factor model with non-stationary common factors and stationary idiosyncratic

components (Chamberlain and Rothschild, 1983; Bai, 2003; 2004). Apart from the nature

of the trend estimation, the seasonal components of the time series are estimated using the

same nonparametric seasonal �lters that are used in the �lter-based methods. Speci�cally,

the seasonal components are obtained by taking moving averages of adjacent months or

quarters over an individual de-trended time series.

The primary advantage of the multivariate approach is that common, abrupt changes in

the levels of the time series do not distort the seasonal patterns generated by the seasonal

adjustment model. When a univariate smoothing �lter is used to estimate the trend compo-

nent, a sudden change in the level of a time series is graduated over many time periods, and

consequently the de-trended time series will exhibit sustained deviations from zero either side

of the turning points in the time series.3 This can generate spurious changes in the seasonal

patterns implied by the seasonal �lters, unless the model is adjusted using an �intervention�

built into the seasonal adjustment procedure (see section 3.3 below). In contrast, because

the approximate factor model is explicitly designed to capture covariation, under the multi-

variate approach a common change in the levels of the time series is accommodated in the

�tted trend component - and not the seasonal component - of the model. Because recessions

coincide with a decline in a large cross section of time series, this means that the multivariate

approach is better at seasonally adjusting data that is subject to the sharp turning points

associated with the peaks and troughs of severe recessions.

The seasonal components obtained from the multivariate approach should be less dis-

torted by the 2007-2009 recession than the seasonal components obtained from a univariate

approach. To explore the performance of the multivariate and univariate seasonal adjust-

ment methods we consider seasonally adjusting a panel of disaggregate nominal imports that

span the 2007-2009 recession. The fall in economic activity in the fourth quarter of 2008 and

the �rst quarter of 2009 was particularly severe in the trade sector (Bridgman, 2013). For

example, nominal crude oil imports fell by 76% between July 2008 and February 2009.

We rely on two evaluation criteria for assessing the seasonal adjustment methods. First,

we directly test whether the recession has distorted the �tted seasonal components of each

method. Most of the import series over the late 2008 to early 2009 period. If that decline

3Economists and Statisticians have long been aware of this potential de¢ ciency of smoothing �lters. See,

e.g., Macaulay (1931).
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is not fully accommodated in the �tted trend, then part of the decline will be pushed into

the �tted seasonal components, causing the seasonal components in quarter one or four to

be smaller (and the seasonal components in quarter two or three to be larger) in the years

preceding, during and following the recession. Our test is based on establishing the statisti-

cal signi�cance of these patterns. Second, we consider revisions to seasonal components. As

illustrated by Fixler and Grimm (2002) and Fixler, Grimm and Lee (2003), revisions to sea-

sonal adjustment factors can be a large source of revisions to seasonally-adjusted national

economic data. Hence, a seasonal adjustment procedure that yields stable seasonal com-

ponents but has large revisions may not be that useful in practice. To explore the revision

performance of the two methods, we estimate the seasonal components over successive years,

revising previously estimated seasonal components as calender time progresses. Evaluation

of the two approaches is based on the magnitude of the revisions to the seasonal components,

with smaller revisions being preferred to larger revisions.

To preview our results, we �nd that the multivariate approach fares better when eval-

uated by either criterion. There is little evidence of a pervasive change in the multivariate

model seasonal components as a result of the recession. In contrast, there is substantial

evidence of pervasive changes in the univariate seasonal components coinciding with the

recession. In addition, the revisions to multivariate seasonal components are smaller (in

absolute magnitude) than the revisions to the univariate seasonal components over the 1998

to 2011 period.

The remainder of the paper is organized as follows. In section two we introduce the

multivariate seasonal adjustment method. In section three we compare the univariate sea-

sonal adjustment to the multivariate approach, highlighting some of the key advantages of

the multivariate method. Section four compares the performance of a �lter-based univariate

approach to the multivariate method using the nominal import data. We then conclude.

For readers who may not be familiar with the speci�cs of the X-11 and similar procedures,

the appendix contains an outline of the non-parameteric �lter-based seasonal adjustment

methods. Throughout tr(A) denotes the trace of a square matrix A.

2 Multivariate Seasonal Adjustment

Our procedure is based on an additive decomposition of the form

xi;t = ci;t + si;t + ui;t; (1)

where t indexes the time period and i = 1; : : : ; n indexes the cross sections in the panel

dataset. The observable variable xi;t is decomposed into three components: ci;t denotes

the �trend�(or �trend-cycle�) component, si;t is the �seasonal�component, and ui;t is the
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�irregular� component.4,5 The �tted trend component captures long-term variation in the

level of an individual time series, including any non-stationarity. The seasonal component

captures predictable patterns in the time series that are related to the time of year (annual

cycles). Seasonally-adjusted time series are obtained by subtracting the estimated seasonal

components from the original time series. Finally, the irregular component acts as a residual,

capturing variation not included in the trend or the seasonal components.6

The decomposition of time series into trend, seasonal and irregular components in (1) is

similar to univariate modeling frameworks such as X-11. However, the primary di¤erence

between the multivariate approach and the univariate approach is the treatment of the trend

component. In univariate procedures, the trend component is estimated using a nonparamet-

ric smoothing �lter applied to an individual time series. (See section 3.1 below.) It therefore

captures only the low-frequency variation in the time series, so that high frequency variation

is pushed into the remaining seasonal and irregular components. Under the multivariate ap-

proach, the trend component will be �tted using a parametric model of covariation between

a large number of time series. This permits it to capture both he long-term variation in the

level of an individual time series as well as the high frequency covariation between the cross

section of time series. Speci�cally, we use a factor model of the form

ci;t =
Pr

j=1 fj;t�j;i

The fj;t are referred to as �common factors�, and �j;i are referred to as �factor loadings�.

r denotes the number of common factors, assumed to be �nite in our parametric context.

Under the additional assumption that the irregular component is weakly dependent across

time series (speci�cally we assume the the panel of irregular components obeys Assumption

A below), the factor structure accounts for both the long-term variation in the level of a

time series (persistency) as well as the high frequency covariation between time series (cross

section dependence).

Because it explicitly accounts for high frequency covariation in the time series, the �t-

ted trend can accommodate abrupt common changes in the level of the times series. (By

�common�, we mean that the event a¤ects a large proportion of the time series at approx-

imately the same time. This idea is formalized in Assumption B below.) In section 3 we

4The decomposition into a trend, seasonal and irregular component is conceptually similar to the �lter-

based seasonal adjustment methods, such as the X-11 family.
5The multiplicative decomposition involve multiplying (rather than adding) these three components to-

gether, and as such the additive decomposition can be obtained by taking the logarithm of the multiplicative

model.
6Seasonal factor models such as (1) are uncommon in the extant seasonal adjustment literature. Camacho,

Lorcha and Perez-Quiros (2012) is a recent example, although the focus of the paper is not on seasonal

adjustment.
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explain how this feature gives the multivariate approach an advantage over the univariate

approach with respect to the potential distortionary e¤ects of the 2007-2009 recession on

seasonally-adjusted data.

Given the estimate of the trend component, the seasonal components are then estimated

using the same approach as used in the univariate �lter-based procedure. Moving average

�lters over adjacent months are applied to each time series once the �tted trend has been

removed. (See the Appendix for more details.) This part of the procedure is nonparametric,

permitting the �tted seasonal components for a given month to change slowly over time.

Conventional factor models (without an explicit seasonal component) are commonly used

in a variety of settings, such as �nance (Ludvigson and Ng, 2005, 2007), macroeconomic

forecasting (Stock and Watson, 2002b; Artis et al., 2005; Marcellino et al., 2003; and Forni

et al., 2001), policy analysis (Bernanke and Boivin, 2003; Giannone et al., 2005a, 2005b;

Favero et al., 2005; Stock and Watson, 2005; and Forni et al., 2003) and price measurement

(Cristadoro et al., 2001; Reis and Watson, 2010). The properties of various estimators of

the conventional factor model are well-established in the extant literature, such as Stock and

Watson (2002a), Bai and Ng (2002), Bai (2003, 2004), and Forni et al. (2000, 2004, 2005).

We use the principal components estimator of the factor model in the estimation of (1).

In the appendix we give an overview of the principal components estimator and the standard

assumptions placed on the model components for identi�cation. Readers who are unfamiliar

with the estimator may wish to read the appendix before tackling the subsection below.

2.1 Seasonal factor model estimation

Let X = (xi;t) denote a T �n matrix of the panel data. In matrix notation, the factor model
is

X = F�0 + S+ u (2)

where F is a T �m matrix of stochastic factors, � a n�m matrix of factor loadings, S is a

T � n matrix of seasonal components, and u is a T � n matrix of idiosyncratic components.
F�0 is a matrix of the common components.

If seasonality is pervasive across time series in the panel (i.e., if the majority of the times

series in the panel exhibit seasonality), simply applying the principal component estimator

to X would yield estimates of stochastic common factors that embody both the non-seasonal

trending component to X as well as seasonal components. Hence, in the equation above,

we make a conceptual distinction between the non-seasonal stochastic factors F and the

seasonal components S, that will be re�ected in the estimation of these components.

There are several possible methods to distinguish between the non-seasonal and seasonal

common factors. For example, Camacho, Lorcha and Perez-Quiros (2012) use a parametric
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approach to estimate both the factors and the seasonal components. In this paper we will

use a semi-parametric approach that permits the seasonal components to vary over time.

We use an initial estimate of the seasonals S before implementing the recursive estimation

of trends and seasonal components. Speci�cally, we do the following:

(i) For some initial estimate of the seasonal components Ŝ0; estimate the common factors

F̂0 to Y � Ŝ0: In the empirical part of this paper, our initial estimate of the seasonal
components will be the normalized average growth rates of the time series in each

month (The monthly averages are normalized to be mean zero).

(ii) Remove the �tted stochastic trends from X, i.e., X� Ĉ; where

Ĉ = F̂0

�
F̂00F̂0

��1
F̂00X = F̂0�̂

0
0:

(iii) Estimate new seasonal components Ŝ1 from the de-trended series. Seasonals are es-

timated using the same �lters as in the univariate X-11 procedure, i.e., by applying

seasonal �lters (moving averages over adjacent months or quarters). Proceed back to

step 1, using Ŝ1 in place of Ŝ0:

(iv) Recursively update the estimated stochastic trends and the seasonal components until

convergence occurs.

The recursive procedure outlined above only di¤ers from the conventional X-11 univariate

approach in how the stochastic trend component is estimated. It is subject to many of the

same model speci�cation decisions, such as the nature of the seasonal �lter. As in X-11, the

seasonal factors are estimated using moving averages on the de-trended data, X� Ĉ.
Because the seasonal �lter is a centered moving average, complications can arise as the

�lters reach the endpoints of the sample. Throughout, we will rely on asymmetric trend

�lters that are computed using only the data available up to the time of the �nal observation

in the times series.7

2.2 Updating Seasonal Components

As time passes more data become available. The model used to estimate the stochastic trend

is parametric, and as additional data are used in the estimation, the estimated trends can

change over the entire time series dimension of the sample. This is a potentially substantial

7That is, if we are estimating the seasonal components up to an including March 2009, we use all available

data up to and including March 2009. As dicussed in section 3.1, another option is to forecast each time

series. We leave the development of the necessary panel forecasting techniques to future research.
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source of variation in di¤erent vintages of the seasonal components. In e¤ect, the entire

history of seasonal components could be revised as new data became available.

In contrast, the smoothing �lters used in the univariate �lter-based methods estimate the

trend using a limited amount of time series data (see section 3.1 below), typically between

one and two years. This means that the univariate trend for a given month or quarter is

not revised after one year has passed. This gives the nonparametric �lter-based method a

signi�cant advantage in terms of reducing revisions to seasonal components.

We therefore suggest that as new data become available as time passes, the �tted trend

component be held �xed, and that only the trend component for the new data be based on

the most recently updated model. For example suppose that the seasonal components are

estimated every year. The seasonal components for the 2008 year would be estimated using

data available up until the end of 2008. As the data for 2009 become available, the seasonal

components for 2009 would be estimated using the data available up until the end of 2009,

while the trend component for 2008 would not be updated.

In addition, to permit the parameters in the model to change slowly over time, we suggest

that the factor model be estimated using a �rolling window�methodology, wherein the time

series dimension of the sample used in estimation is held �xed. Returning to the example

above, the seasonal components for the 2008 year could be estimated from data spanning

1999 to 2008 (corresponding to a 10 year window), and the seasonal components for the 2009

year could be estimated from data spanning 2000 to 2009, and so on.

To formalize this estimation method, we introduce the following notation. Let

X(t1;t2) = fXs; t1 � s � t2g

denote the observed panel from time t1 to t2, so that X(t1;t2) is a (t1 � t2) � n matrix. We
then let

Ĉ(t1;t2) =
n
Ĉs;(t1;t2); t1 � s � t2

o
denote the (t1 � t2) � n matrix of stochastic trends estimated using X(t1;t2), where Ĉs;(t1;t2)
denotes an n� 1 vector of the cross section of �tted trends at time s. Let freq denotes the
sub-annual sampling frequency of the data (e.g., freq = 12 for monthly data). Then our

proposed estimation method is of the formn
~Cs

oT
s=1

=
n
Ĉs;(�t�S;�t)

oT
s=1
; t
�
< s � �t

and

�t =
l

s
freq

m
� freq; t

�
=
j

s
freq

k
� freq;
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and where S denotes the �xed time series dimension of the sample used in estimation (e.g.,

to base estimation on ten years of data, S = 120 for monthly data), d�e denotes the smallest
integer greater than or equal to the argument, and b�c denotes the largest integer less than
or equal to the argument.

3 Comparison of Multivariate and Univariate Seasonal

Adjustment

In this section we compare the multiplicative seasonal adjustment method outlined in the

previous section to a conventional �lter-based univariate procedure similar to the X-11 family

of seasonal adjustment methods. We begin with a brief overview of the �lter-based methods,

before moving on to discuss the advantages of the multivariate approach in dealing with

severe business cycle �uctuations. In the �nal subsection we outline some of the interventions

that can be used in the X-11 module to mitigate the distortionary e¤ects, and we will argue

that the advantages of the multivariate approach are likely to be greater for timely seasonal

adjustment, such as concurrent seasonal adjustment.

3.1 Univariate Filter-based Seasonal Adjustment

The canonical additive decomposition of a time-series xt for �lter-based seasonal adjustment

is as follows.

xt = ct + st + ut; (3)

where ct denotes the �trend�(or �trend-cycle�) component, st denotes the �seasonal�compo-

nent, and ut denotes the �irregular�component. In X-11 (and subsequent iterations thereof,

such as X-12 and X-13) the trend and seasonal components are estimated using moving

average �lters. In the �rst pass, the trend component is estimating using a smoothing �lter.

The trend is then subtracted away from the time series, and the seasonal components are

estimated by applying a second moving average over adjacent months. The seasonal �lter

therefore spans a limited number of years, permitting the �tted seasonal components to vary

slowly over time. The seasonal components are normalized to be mean zero within a calender

year.

Because these moving averages are typically centered moving averages, complications

can arise as the �lters reach the endpoints of the sample. Either asymmetric �lters can

be used (as in X-11), or the unavailable series can be forecast (using the ARIMA module

in X-11-ARIMA or X-12-ARIMA). Throughout, we will rely on asymmetric trend �lters

that are computed using only the data available at the time of the �nal observation in
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the times series.8 Similarly, for both the multivariate and the univariate methods, we use

asymmetric seasonal �lters at the end points of the sample. This approach corresponds to

�concurrent� seasonal adjustment, as opposed to �factor projected� seasonal adjustment.

Under the latter approach, the seasonal components for the a given period are initially

computed a few periods after the close of the reference period. In the interim, the seasonal

component(s) from previous periods are used. By delaying the computation of the seasonal

components, the analyst has more data with which to �t the smoothed trend.

3.2 Business Cycle Fluctuations

Both the nonparametric univariate and the semi-parameteric multivariate models can ac-

commodate business cycle �uctuations in the �trend�component of the respective models.

However, the smoothing �lter - used to estimate the trend component under the univari-

ate approach - graduates high frequency variation in the data over several periods. The

de-trended time series that is subsequently used to estimate the seasonal components will

exhibit persistent deviations from zero around these turning point(s), and this will distort

the seasonal pattern in the de-trended data.9

As an example, nominal crude oil imports experienced a particularly acute fall during

the recession, declining by 76% between July 2008 and February 2009. This fall is too large

and sudden to be accommodated in a simple moving average. Figure 1 depicts a basic

2 � 12 moving average (a 13-month moving average) estimated at two di¤erent points in
time: March 2008 and March 2009. The vintages are particularly instructive because the

trough in nominal imports occurs in February 2009, and the brief run up in imports over the

summer of 2008 has not yet occurred in March 2008. The latter estimate begins to decline

in early 2008, and reaches a nadir in mid 2009, thus smoothing the period of decline over

more than a year. Consequently, the de-trended series exhibited in �gure 2 has a positive

and persistent deviation from zero over March to October 2008, and a persistent negative

deviation from November 2008 to June 2009.

Figure 3 exhibits the seasonal components obtained by applying a standard 3�9 seasonal
�lter to the de-trended series in �gure 2. The 3 � 9 �lter spans eleven years of data. The

8We use asymmetric �lters as preliminary analysis showed that automated ARIMA forecasts perfomed

poorly over the recession. Because the univariate approaches rely more heavily on future data (speci�cally for

trend estimation), it would seem that using ARIMA forecasts would disadvantage the univariate approach

more than the multivariate approach. In addition, we use asymmetric �lters for the multivariate approach.
9The seasonal �lters use a limited number of observations to estimate the seasonal component for a given

month in a given year. For example, a 3� 3 �lter uses 5 years of data. One potential way to limit the e¤ect
of an irregularity is to lengthen the span of the seasonal �lter, with the intention of averaging away the

irregularity in a longer span of data. In what follows, we use a 3�9 �lter (spanning 11 years) to demonstrate
that this approach is does not su¢ ciently ameliorate the distortions caused by the recession.
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Figure 1: Log crude oil imports and 2 � 12 trend, March 2008 and March 2009 vintage
estimates.

Figure 2: Vintage estimates of de-trended log crude oil imports. Trend component estimated

using the 2� 12 �lter.
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Figure 3: Vintage estimates of seasonal components to log crude oil imports. Trend compo-

nent estimated using the 2� 12 trend �lter; seasonal component estimated using the 3� 9
seasonal �lter.

seasonal pattern in the March 2008 estimates (before the severe downturn beginning in

August 2008) shows that imports usually increase over the summer months before falling

over winter. Imports are lowest in February, although it appears that February imports

were getting slightly larger over the 2004 to 2008 period (note that the bars get smaller in

magnitude for this period).

The seasonal pattern is exacerbated in the March 2009 vintage: All seasonal components

grow larger in magnitude once the additional year of data is included. This additional year

contains the recessionary fall in nominal crude oil imports. As shown in �gure 2 above,

detrended imports reach a peak in August 2008 and a trough in February 2009. Correspond-

ingly, the March 2009 vintage seasonal components for February become more negative

(relative to the March 2008 vintage), and the March 2009 vintage seasonals for August be-

come more positive (relative to the March 2008 vintage). From this we can safely conclude

that the recession has distorted the seasonal components.

Note that for the March 2009 vintage estimate, the seasonal components grow larger in

magnitude over the 2004 to 2009 period. This is also indicative of the recession distorting the

seasonal components. The 3�9 �lter uses �ve years of data either side of the reference month
(e.g., the seasonal component for February 2004 depends on the de-trended observation for

February 2009), and hence the recession begins to a¤ect the seasonal components from late

2003 onwards. This is made more clear in �gure 4 below, in which we plot the March 2009

vintage estimates over a longer time period. The February seasonal component decreases

12



Figure 4: Seasonal components to log crude oil imports. Trend component estimated using

the 2� 12 trend �lter; seasonal component estimated using the 3� 9 seasonal �lter. March
2009 vintage estimates.

from around -14% in the �rst half of the 2000 decade to -18% in 2009.10 In the empirical

evaluation will will exploit this pattern when testing for distortions in seasonal components.

The distortion in the seasonal components arises because the decline in nominal imports

is too steep for the smoothing �lter. This de�ciency in the simple moving average �lter

has long been identi�ed (see, e.g., Henderson, 1916; Macaulay, 1931; Musgrave, Shiskin and

Young, 1967), and hence the X-11 family of procedures include alternative smoothing �lters

- such as the Henderson �lter - that can better track in�ections and turning points. We

discuss this �lter in more detail next.

3.2.1 Henderson Trend Filters

The Henderson (1916) �lter minimizes the sum of squares of the third di¤erence of the

moving average series. This permits the �tted trend to track a local cubic polynomial, which

means it can follow smooth in�ections in the time series better than a simple moving average

(such as the 2�12 trend �lter depicted in �gure 1). For this reason it is favored as a method
for estimating the low frequency variation in economic time series.11

Two caveats apply to the Henderson �lter. First, like all smoothing �lters, discontinuities

10Because the seasonal decomposition is additive and the import series has been logged, the seasonal

components closely correspond to percentage deviations in the level of the nominal import series.
11Musgrave, Shishkin and Young (1967) advocate the use of the �lter in their review of the X-11 procedure.

The Australian Bureau of Statistics use the �lter as a �nal estimate of the trend (Australian Bureau of

Statistics, 2005).
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Figure 5: Log crude oil imports and 13 term Henderson trend, March 2008 and March 2009

vintage estimates.

in the slope of the original time series will be graduated over the span of the �lter. This means

that the abrupt changes in the level of the original time series will not be accommodated

in the trend. Second, the �lter dampens annual cycles in the time series, and therefore

should not be used to estimate the trend component in non-seasonally-adjusted data (see,

for example, chapter 5 of Australian Bureau of Statistics, 2005). For this reason, many

seasonal adjustment procedures permit the Henderson �lter to be used as a �second pass�

estimate of the trend, after an initial �rst pass seasonal adjustment has been made. This �rst

pass adjustment is typically made using a simple moving average method (see the Appendix

for a step-by-step guide to this procedure). Thus any distortion in the �rst pass seasonal

components will have a second order e¤ect on the second pass estimates.

In �gure 5 we depict the 13 term Henderson trend for crude oil over the same time period

as in �gure 1. It does a much better job a tracking the decline: For example, the peak in

the trend coincides with the peak in the time series. However there is still some graduation

of the decline. In particular, the slope of the smoothed trend is still less than that of the

time series over the July 2008 to February 2009 period. As demonstrated in �gure 6, the

�tted seasonal patterns thus change dramatically between the March 2008 and March 2009

vintages. The pattern is similar to that exhibited above in �gure 3. The seasonal components

grow larger in magnitude after the additional year of data spanning the recession is included

in the estimation procedure.
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Figure 6: Vintage estimates of seasonal components to log crude oil imports. Trend com-

ponent estimated using the 13 term Henderson trend �lter; seasonal component estimated

using the 3� 9 seasonal �lter.

3.2.2 Multivariate Model

In contrast to the smoothing �lters, the factor model (used to estimate the trend component

under the multivariate approach) can easily accommodate abrupt changes in the level of the

time series provided that the change is common (i.e., a large proportion of the time series

experience a change in level at approximately the same time). This is because the factor

model permits discontinuities in the slope of the �tted trend in order to capture the high

frequency covariation in the cross section of time series.

The recession provides an example of a common, abrupt change in the level of a time

series. Figure 7 below exhibits crude oil imports alongside other 5 digit level imports. (Refer

to section 4 for details on these data.) All of the series experience a decline in late 2008 to

a lesser or greater extent. Because the factor loadings are di¤erent for di¤erent time series,

the factor model is su¢ ciently �exible to permit the decline in computer imports to be less

severe than the decline in crude oil when modeling the covariation in the time series.

Figure 8 below depicts the trend component �tted under the multivariate approach, for

the March 2008 and March 2009 vintages. (Refer to section 4 for speci�c details regarding

the estimation of the trend.) There is no change between the March 2009 and March 2008

vintages for the period in which they overlap: This is due to the nature of the updating used

in the estimation of the parametric model (see section 2.2 above). The panel dataset used

in estimation of the factor model is all 5-digit level imports (additional details regarding

estimation are described in the following section). The �tted trend component does a better

job of tracking the decline in the time series over the August 2008 to February 2009 period
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Figure 7: Covariation in selected log nominal imports.

than both the 2 � 12 �lter and the Henderson �lter. (See �gure 10 below for a direct

comparison of the three �tted trends.) Consequently, the seasonal components depicted in

�gure 9 appear more stable, and in particular they do not change substantially between the

March 2008 and March 2009 vintages.

The key di¤erence between the smoothed trend (depicted in �gures 1 and 5) and the mul-

tivariate trend is that the slope of the latter is discontinuous. This permits the multivariate

trend to remain high through the summer of 2008, before plummeting between October and

November 2008 along with the original time series. In contrast, both the Henderson and the

2 x 12 �lters are �pulled down�earlier by the precipitous decline. This point is demonstrated

in �gure 10.

3.3 Interventions

The weaknesses of the conventional X-11 procedures to large discontinuities in the slope of

the time series are well known. The X-11 modules come with in-built methods to correct or

attenuate the problems. In this subsection we brie�y overview these interventions.

Outliers. An outlier intervention involves (essentially) omitting the period of the time

series that is subject to irregular behavior. Because the recession is likely to generate pro-
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Figure 8: Log crude oil imports and factor model trend, March 2008 and March 2009 vintage

estimates.

Figure 9: Multivariate �lter-based seasonal components, log crude oil, March 2008 andMarch

2009 vintage estimates. Trend component estimated using a factor model.
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Figure 10: Estimates of trend component to log crude oil imports, March 2009 vintage

estimates. Both the Henderson trend and 2� 12 trend are 13-month moving averages.

longed changes in the level of a time series, a sequence of outliers is likely to be required

if using the treatment to deal with the e¤ects of a recession. The regARIMA capability in

X-12 permits outliers in the ARIMA modeling phase of the seasonal adjustment procedure,

and so the ARIMA model is used to ��ll in�parts of the series that are considered outliers.

The X-12 package includes various statistical methods for identifying outliers according to

statistical thresholds that can be set by the analyst.

Trend Discontinuities. As demonstrated in the previous subsection, the smoothness of

the univariate trend is a disadvantage when tracking sharp in�ection points. Interventions

such as level shifts, temporary changes and ramps e¤ectively introduce discontinuities into

the �tted trend to better accommodate sharp discontinuities. A level shift introduces a

single break in the trend between consecutive time periods; a temporary change introduces

a level shift followed by a geometric decay back to the original level of the trend; and a ramp

introduces a break between two non-consecutive time periods with a linear trend inserted

between the break points. While there are statistical tests for determining the size and

duration of a level shift or a temporary change, there are no tests for the size and duration

of the ramp intervention.

The range of possible interventions is su¢ ciently broad to ensure that an analyst can
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remove any distortions in the seasonal components. Indeed, there is substantial evidence to

suggest that seasonally-adjusted data published by Federal statistical agencies are largely

free of recession-related distortions (see., e.g., Macroeconomic Advisors, 2012; Kropf and

Hudson, 2013; Evans and Tiller, 2013).

However, we raise two concerns regarding the use of interventions. The �rst is the lack

of timeliness of the intervention. Applying the intervention requires that the analyst must

select dates on when to begin and when to end the intervention. This can be particularly

problematic when the seasonal adjustment needs to be performed while the recession is

occurring, as it requires the analyst to select the peak and the trough dates in close to real

time. If instead the analyst relies on formal statistical methods, several years may pass before

the test selects the size and the dates of the break with any certainty. (Indeed, the asymptotic

theory for determining the size and dates of a break require the time series on either side of

the break to grow large (see, amongst others, Bai, 1996). Because the multivariate approach

permits discontinuities in the �tted trend, it is not subject to these concerns.

The second concern is the transparency of the intervention. The nature of the intervention

somewhat depends subjectivity of the analyst, meaning that it may be di¢ cult for a third

party to replicate the seasonal components published by a statistical agency. If statistical

methods are used to select the type, duration and size of the intervention, then a third party

must know the relevant thresholds and model selection criteria adopted in order to have a

chance of replicating the series. If instead the subjective judgment of the analyst is used,

then a third party will not be able to replicate the series.

Because the distortionary e¤ects of the recession can be mitigated by use of these interven-

tions, but only at after a substantial delay, we see the primary advantage of the multivariate

approach as being the timely construction of robust seasonally-adjusted data. In comparing

the two approaches in the next section we will estimate the seasonal model in near real time.

In this sense we conduct concurrent seasonal adjustment exercise.

4 Empirical Evaluation

In this section we apply our new multivariate seasonal adjustment method to a panel data set

of nominal goods imports. For comparative purposes we also apply the conventional �lter-

based procedures, using both the simple moving average and the Henderson �lter. (Both are

therefore univariate X-11 methods, although the Henderson �lter is more likely to be used

by statistical agencies.).

Many of the time series in the dataset exhibit either level shifts or tight downward

in�ections in late 2008 after the �nancial crisis sets in. The precipitous fall in trade is

su¢ ciently pervasive to show up in aggregate trade numbers. Figure 11 below exhibits
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Figure 11: Monthly Nominal Goods Imports, 2001-2011.

monthly aggregate imports over the 2002 to 2012 period. Imports experience a large decline

over the last half of 2008 and into early 2009. As discussed above, conventional smoothing

�lters cannot easily accommodate these abrupt changes in the trend of a time series, and

hence we expect the multivariate approach to yield more stable seasonal adjustment factors

over the broad recessionary period.

We propose two primary quantitative criteria for evaluating the two seasonal adjustment

methods. Our primary evaluation criteria will be to test for distortions in the seasonal

components of the time series. Our secondary criteria considers the revisions to seasonal

components in a real-time updating exercise. Because one of our main evaluation criteria is

revisions, we eliminate in�uences on revisions other than the e¤ect of new data becoming

available. In this regard:

� Asymmetric �lters are used for estimating seasonal components at the endpoints of
the sample. The use of symmetric �lters requires the time series to be forecast and

backcast from the endpoints of the sample. This is typically done by using ARIMA

models (hence the X-11-ARIMA nomenclature). As time passes, the forecasted data

are replaced with realized data, meaning that forecast error is a major component of

revisions to seasonal components. By using asymmetric �lters, we remove forecast

error from the revisions.

� For the univariate approach, we use a centered 2 � 12 month moving average as a
�rst-pass estimate of the trend. This is a standard �lter used in seasonal adjustment

methods. For the Henderson univariate approach, a 13 term Henderson �lter is used

as a second-pass estimate of the trend before making a �nal estimate of the seasonal
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components based on the Henderson-�ltered time series. Both the 2 � 12 and the

Henderson �lter use asymmetric �lters at the end points of the sample.

� For both the univariate and multivariate approaches we use a 3 � 9 moving average
window for the seasonal �lters.

� Seasonal components are re-estimated either at the end of every year (December), or
at the end of every quarter (March, June, September or December), using the data

available up to that point in calender time.

� The factor model is estimated using a rolling window of 120 months (10 years) of

time series. Rather than selecting a speci�c factor number, we use model averaging

based on the Bai-Ng IC3 (k) criteria for each sub-sample. This particular criteria has

the lowest penalty on model complexity of the three IC criteria, and we have greater

concern of under-�tting the model rather than over-�tting the model.12 The panel is

�rst di¤erenced and then standardized before the IC are computed. The maximum

number of factors is set to the largest integer less than 2 � min
�p
T ;
p
n
�
, which is

this case is 22.13

In practice the span of the univariate �lters (such as the 2�12 trend, 13 term Henderson
�lter, and 3� 9 seasonal �lter) can be selected based on relevant signal-to-noise ratios in the
X-11 procedure (see, e.g., Australian Bureau of Statistics, 2005). In this empirical exercise

we pre-set the span of the �lters for two reasons. First, the 3� 9 seasonal �lter spans eleven
years of data and thus the relatively long span should help mitigate any distortionary e¤ects

of the recession. Thus, we expect the long span to aide the performance of the univariate

approach. Second, preliminary analysis revealed that automated �lter selection was markedly

e¤ected by the onset of the recession, with shorter seasonal �lter spans being selected once

the recession distorted the seasonal components. This worsened the performance of the

univariate approach when evaluated by our criteria.

Updating the seasonal components at the end of every quarter corresponds to concurrent

seasonal adjustment for data released at a quarterly frequency. As discussed at the end of

section 3.3, we see the primary advantage of the multivariate approach being the timely

12A selection criertia that is motivated within an information loss framework would be ideal in this appli-

cation. Indeed, univariate seasonal adjustment models are often selected using AIC (Lytras, 2012), which

minimizes Kullback-Leibler infomation loss. Unfortunately the author does not know of any formal criteria

for factor model estimation, and so we rely on the popular Bai-Ng criteria.
13The maximum is set based on the conjecture that the maximum model dimensionality can grow at a

rate slower than the rate of estimator convergence. Similar results have been proven for time series models

(Shibata, 1980; Ing and Wei, 2005). As discussed in section 6.2, the rate of convergence for stationary panels

is min
�p
n;
p
T
�
.
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seasonal adjustment of time series. Concurrent seasonal adjustment contrasts against �pro-

jected factor�seasonal adjustment, in which the estimation of seasonal components is delayed

until additional data are available, and the seasonal components from previous periods are

used in the interim. The performance of a univariate �lter approach is therefore going to

depend on how soon after the close of the reference quarter the �rst estimate is made. (As

additional time passes, the estimate is likely to be better, particularly if interventions are

employed.) Rather than further complicate the analysis by considering the performance of

the univariate and multivariate methods at di¤erent lags, we opt to use a concurrent seasonal

adjustment approach. A projected-factor comparison is however worthy of future research.

4.1 Data and Seasonal Descriptive Statistics

Non-seasonally-adjusted data was obtained from the BEA, spanning January 1989 to De-

cember 2011. The data are obtained at the 5-digit level (the highest degree of disaggregation

possible), although sparse time series were aggregated up to the 4-digit level for computa-

tional ease.14 All data are logged prior to additive seasonal adjustment modeling. This

corresponds to multiplicative seasonal adjustment of the original level of the series, although

all evaluation criteria will be expressed in relation to the logged time series.

To convey the normal pattern of seasonality in the import series, Table 1 contains average

seasonal components for the monthly (log) imports by quarter over the 1990 to 2007 period.

We can see that total imports generally grow (on average) in quarters two and three, and

fall in quarter one. Imports are generally �at in quarter four. This however masks some

heterogeneity. Foods and consumer imports increase in quarter 4. In addition, the seasonality

is more pronounced in foods and consumer goods.

Although the NBER recession begins in 2007, the fall in aggregate imports begins in late

2008. The exact timing of the fall in imports di¤ers across the disaggregate imports. Tables

2 and 3 exhibit a frequency count of the quarter of the peak and the trough in the individual

import series during the recession. The frequency counts are broken down by two digit level

subgroups. Many of the Industrial Supplies and Capital imports peak over the summer and

reach a trough in early 2009. The timing of the peak is slightly later for consumer goods,

possibly due to holiday-driven demand for �nal goods.

14If a particular time series exhibits zero entries in any time period, all items within the items�4-digit

category are aggregated together to form a new time series. All 5-digit items within that particular 4-digit

class are removed from the dataset.
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Table 1: Seasonality in 5-digit-level Imports

Quarter Foods Industrial Capital Automotive Consumer Other All

Q1 -0.018 -0.010 -0.022 -0.005 -0.098 -0.016 -0.033
Q2 -0.007 0.020 0.011 0.032 -0.055 0.004 -0.002

Q3 -0.038 -0.007 -0.008 -0.064 0.061 -0.004 0.002

Q4 0.025 -0.019 0.010 0.024 0.028 0.013 0.005

Table entries are average seasonal components implied by the log di¤erence of seasonally-adjusted

to non-seasonally-adjusted monthly imports published by the BEA. Averages are taken over

January 1990 to December 2007. Bold font indicates statistical signi�cance at the 5% level using

(cross section heteroskedasticity) robust White (1980) standard errors. Two digit level sub group

abbreviations are given in the note to Table 2.

Table 2: Frequency of local peaks in monthly import time series by quarter

Peak Date Foods Industrial Capital Automotive Consumer Other All

Q1 2008 (or earlier) 4 8 4 3 4 0 23

Q2 2008 2 12 11 1 5 0 31

Q3 2008 3 26 10 0 7 4 50

Q4 2008 (or later) 8 5 4 0 14 1 32

Table entries are the number of peaks in the cross section of import series that occurred in the

reference quarter. For example, a total of 23 import series had a peak in Q1 2008 or earlier. Two

digit level sub group abbreviations are as follows: �Foods�refers to �Foods, feeds and beverages�,

�Industrial�refers to �Industrial supplies & materials�, �Capital�refers to �Capital goods, except

automotive�, �Automotive�refers to �Automotive vehicles, parts and engines�, �Consumer�

refers to �Consumer goods, except automotive�, and �Other�refers to �Imports, not elsewhere

speci�ed.�
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Table 3: Frequency of local troughs in monthly import time series by quarter

Trough Date Foods Industrial Capital Automotive Consumer Other All

Q4 2008 (or earlier) 4 2 1 0 3 1 6

Q1 2009 7 22 12 2 19 3 65

Q2 2009 2 16 7 1 4 0 30

Q3 2009 2 8 6 1 2 1 20

Q4 2009 (or later) 2 3 3 0 2 0 10

Table entries are the number of troughs in the cross section of import series that occurred in the

reference quarter. For example, a total of 65 import series had a trough in Q1 2009.

4.2 Statistical Tests for Distortion of Concurrent Seasonal Com-
ponents

In this subsection we test for distortion in the �tted seasonal components that is brought

about by the 2007-2009 recession. A simple approach would be to see if the �tted seasonals

change around the 2008 period. However the nonparametric seasonal �lter used in both the

univariate and the multivariate approach is su¢ ciently �exible to permit �tted seasonals to

change over time, and thus changes in the �tted seasonal components of an individual time

series may be re�ective of genuine changes in seasonal patterns in the time series that coincide

with the 2007-2009 period, rather than of spurious changes in seasonals brought about the

deceleration in economic activity. That said, it seems unlikely that in a large enough cross

section of times series, we would not observe a genuine, common change in seasonal patterns

over the recession. A common change is therefore more indicative of distorted seasonal

components.

What would a common distortionary e¤ect look like? As discussed in the introduction,

the timing of the recession is likely to make the seasonal components small in quarters four

and one, and larger in quarters two and three, if the trend component �under-�ts�the decline

(that is, rate of change in the �tted trend is less than that of the time series). Note that

this holds regardless of the seasonal patterns of the speci�c time series in question. Thus

although consumer goods tend to grow in quarter 4, while other categories are �at or decline,

this does not matter when looking for distortionary e¤ects once we condition of the level of

the seasonal component.15

To test for a common change in the �tted seasonal components, we estimate a regression

15Thus, if the �tted trend understates the fall in economic activity, we expect to see the recession distorting

seasonal factors by making them larger in magnitude.
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of the form

ŝi;j;s = �i;j + �s + ui;j;s; j 2 J; J 2 fQ1; Q2; Q3; Q4g

Here s indexes the year, and j = 1; : : : ; 12 indexes the month, so that ŝi;j;s denotes the

estimated seasonal component for month j of year s for the ith cross section. The sets Q1,

Q2, etc., correspond to the months in each quarter of the year, i.e.,

Qk = fj : 3� (k � 1) + 1 � j � 3� kg ; k = 1; 2; 3; 4:

Thus we pool across cross sections and across months within each quarter when testing a

pervasive change in seasonal components. The (cross section) �xed e¤ect �i;j captures the

time-series average of the month j seasonal component of the ith cross section over the time

period considered. For example, if the seasonal component for (log) crude oil is negative

on average in February, then the �xed e¤ect for February crude oil will be negative. The

common time e¤ects �s then pick up any common trend in the seasonal components (across

all cross sections) within each quarter after conditioning on the �xed e¤ects. For example, if

the seasonal component for the �rst quarter are lower at the end of the sample than at the

beginning (on average across cross sections ), then this will be re�ected in the sequence of

�tted �s going from positive to negative over the sample. We interpret statistical signi�cance

in the �tted �s as distortion in the seasonal components.

4.2.1 Univariate Seasonal Adjustment

Table 4 below exhibits the point estimates of the dummy variables �s for the univariate

seasonal components, as estimated using data up to and including December 2009. Bold

font indicates the estimate is statistically di¤erent from zero at the 95% level. 115 of the 120

points estimates are statistically di¤erent from zero, indicating that the components exhibit

a clear pattern across the 136 export series over the 2000 to 2009 period. The pattern is clear:

seasonals in quarters three and four grow larger over the sample period, while seasonals in

quarters one and two grow smaller. This is consistent with a pervasive decline in all the time

series that ends in the �rst quarter of 2009, that is not accommodated in the �tted trends.

Tables 5 through 7 below exhibit the point estimates of the dummy variables for the

March 2009, June 2009, and September 2009 vintages. In each case, distortion in the seasonal

components is evident.

4.2.2 Univariate Henderson Filter Seasonal Adjustment

Table 8 exhibits the point estimates of the dummy variables �s for the December 2009

vintage of univariate seasonal components based on the second-stage Henderson trend �lter.
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Table 4: Test for Distortion in Univariate Seasonals, 2 x 12 trend �lter, December 2009

vintage

Depend. Var. 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Q1 Seasonals 0.51 0.48 0.47 0.40 0.22 -0.20 -0.40 -0.47 -0.42 -0.58
Q2 Seasonals 0.22 0.29 0.36 0.33 0.16 0.05 -0.11 -0.20 -0.42 -0.69
Q3 Seasonals -0.34 -0.41 -0.47 -0.32 -0.12 0.18 0.27 0.29 0.32 0.61
Q4 Seasonals -0.39 -0.35 -0.36 -0.41 -0.26 -0.03 0.24 0.38 0.52 0.65

Estimates from a regression of seasonal components on year dummy variables. Point estimates are

multiplied by 100. Bold face font denotes statistical signi�cance at the 95% level. Standard errors

are clustered within cross sections. Trend is estimated using a 2 � 12 trend �lter, seasonals

estimated using a 3 � 9 �lter.

Table 5: Test for Distortion in Univariate Seasonals, 2 x 12 trend �lter, March 2009 vintage

Depend. Var. 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Q1 Seasonals -0.19 -0.10 -0.03 0.03 0.04 0.10 0.11 0.08 0.03 -0.07

Q2 Seasonals -0.12 -0.24 -0.31 -0.38 -0.20 0.05 0.30 0.28 0.27 0.34
Q3 Seasonals -0.16 -0.12 -0.08 -0.11 -0.11 -0.04 0.04 0.10 0.17 0.32
Q4 Seasonals 0.47 0.46 0.42 0.46 0.27 -0.11 -0.45 -0.47 -0.47 -0.59

Estimates from a regression of seasonal components on year dummy variables. Point estimates are

multiplied by 100. Bold face font denotes statistical signi�cance at the 95% level. Standard errors

are clustered within cross sections. Trend is estimated using a 2 � 12 trend �lter, seasonals

estimated using a 3 � 9 �lter.
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Table 6: Test for Distortion in Univariate Seasonals, 2 x 12 trend �lter, June 2009 vintage

Depend. Var. 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Q1 Seasonals -0.18 -0.30 -0.36 -0.44 -0.22 0.03 0.34 0.32 0.35 0.45
Q2 Seasonals -0.21 -0.17 -0.12 -0.16 -0.14 -0.06 0.08 0.13 0.25 0.41
Q3 Seasonals 0.53 0.51 0.48 0.52 0.31 -0.13 -0.49 -0.54 -0.53 -0.67
Q4 Seasonals -0.13 -0.04 0.01 0.08 0.05 0.15 0.07 0.08 -0.07 -0.20

Estimates from a regression of seasonal components on year dummy variables. Point estimates are

multiplied by 100. Bold face font denotes statistical signi�cance at the 95% level. Standard errors

are clustered within cross sections. Trend is estimated using a 2 � 12 trend �lter, seasonals

estimated using a 3 � 9 �lter.

Table 7: Test for Distortion in Univariate Seasonals, 2 x 12 trend �lter, September 2009

vintage

Depend. Var. 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Q1 Seasonals -0.26 -0.23 -0.18 -0.30 -0.23 -0.11 0.17 0.23 0.38 0.52
Q2 Seasonals 0.57 0.54 0.51 0.47 0.26 -0.18 -0.45 -0.52 -0.50 -0.69
Q3 Seasonals 0.22 0.30 0.35 0.34 0.18 0.08 -0.12 -0.19 -0.43 -0.72
Q4 Seasonals -0.53 -0.60 -0.68 -0.51 -0.21 0.21 0.40 0.48 0.55 0.89

Estimates from a regression of seasonal components on year dummy variables. Point estimates are

multiplied by 100. Bold face font denotes statistical signi�cance at the 95% level. Standard errors

are clustered within cross sections. Trend is estimated using a 2 � 12 trend �lter, seasonals

estimated using a 3 � 9 �lter..
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109 of the 120 points estimates are statistically di¤erent from zero, indicating distortion in

the seasonal components. This is a small improvement on the univariate with 12� 2 �lter,
exhibited in table 4. The pattern remains the same as before: seasonals in quarters three

and four grow larger over the sample period, while seasonals in quarters one and two grow

smaller.

Table 8: Test for Distortion in Univariate Seasonals, Henderson �lter, December 2009 vintage

Depend. Var. 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Q1 Seasonals 0.39 0.32 0.27 0.25 0.16 -0.11 -0.30 -0.34 -0.33 -0.31
Q2 Seasonals 0.09 0.14 0.18 0.13 0.03 0.00 -0.04 -0.07 -0.17 -0.31
Q3 Seasonals -0.21 -0.24 -0.24 -0.19 -0.09 0.08 0.18 0.20 0.22 0.30
Q4 Seasonals -0.27 -0.23 -0.21 -0.19 -0.11 0.03 0.17 0.22 0.28 0.32

Estimates from a regression of seasonal components on year dummy variables. Point estimates are

multiplied by 100. Bold face font denotes statistical signi�cance at the 95% level. Standard errors

are clustered within cross sections. Second stage trend estimated using Henderson �lter, with

asymmetric �lter at the endpoints. Seasonals estimated using a 3 � 9 �lter.

Tables 9 through 11 below exhibit the point estimates of the dummy variables for the

March 2009, June 2009, and September 2009 vintages. In each case, distortion in the seasonal

components become more evident as the vintage progresses.

Table 9: Test for Distortion in Univariate Seasonals, Henderson �lter, March 2009 vintage

Depend. Var. 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Q1 Seasonals -0.20 -0.12 -0.06 0.00 0.00 0.06 0.09 0.09 0.09 0.04

Q2 Seasonals -0.12 -0.14 -0.16 -0.18 -0.11 0.02 0.15 0.18 0.19 0.19

Q3 Seasonals -0.10 -0.07 -0.05 -0.08 -0.08 0.00 0.06 0.10 0.10 0.13

Q4 Seasonals 0.42 0.34 0.27 0.26 0.19 -0.08 -0.30 -0.37 -0.37 -0.36

Estimates from a regression of seasonal components on year dummy variables. Point estimates are

multiplied by 100. Bold face font denotes statistical signi�cance at the 95% level. Standard errors

are clustered within cross sections. Second stage trend estimated using Henderson �lter, with

asymmetric �lter at the endpoints. Seasonals estimated using a 3 � 9 �lter.
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Table 10: Test for Distortion in Univariate Seasonals, Henderson Filter, June 2009 vintage

Depend. Var. 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Q1 Seasonals -0.18 -0.19 -0.20 -0.19 -0.11 0.03 0.16 0.20 0.23 0.25
Q2 Seasonals -0.13 -0.09 -0.06 -0.07 -0.07 0.00 0.06 0.10 0.11 0.15

Q3 Seasonals 0.45 0.36 0.29 0.29 0.20 -0.09 -0.32 -0.39 -0.40 -0.38
Q4 Seasonals -0.14 -0.08 -0.03 -0.02 -0.01 0.06 0.10 0.09 0.05 -0.02

Estimates from a regression of seasonal components on year dummy variables. Point estimates are

multiplied by 100. Bold face font denotes statistical signi�cance at the 95% level. Standard errors

are clustered within cross sections. Second stage trend estimated using Henderson �lter, with

asymmetric �lter at the endpoints. Seasonals estimated using a 3 � 9 �lter.

Table 11: Test for Distortion in Univariate Seasonals, Henderson �lter, September 2009

vintage

Depend. Var. 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Q1 Seasonals -0.20 -0.15 -0.10 -0.11 -0.09 0.00 0.09 0.15 0.19 0.23

Q2 Seasonals 0.45 0.36 0.29 0.26 0.18 -0.11 -0.32 -0.38 -0.37 -0.36
Q3 Seasonals 0.11 0.16 0.19 0.14 0.05 0.01 -0.04 -0.09 -0.19 -0.34
Q4 Seasonals -0.35 -0.37 -0.38 -0.30 -0.13 0.10 0.27 0.32 0.37 0.48

Estimates from a regression of seasonal components on year dummy variables. Point estimates are

multiplied by 100. Bold face font denotes statistical signi�cance at the 95% level. Standard errors

are clustered within cross sections. Second stage trend estimated using Henderson �lter, with

asymmetric �lter at the endpoints. Seasonals estimated using a 3 � 9 �lter.

29



4.2.3 Multivariate Seasonal Adjustment

In contrast to the univariate seasonal components exhibited in tables 4 and 8, there is far less

evidence of distortion in thee December 2009 vintage of multivariate seasonals. As shown in

table 12, only 25% of the �tted seasonals are statistically signi�cant.

Table 12: Regression Test for Distortion in Multivariate Seasonals, December 2009 vintage

Depend. Var. 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Q1 Seasonals -0.04 0.01 0.06 0.09 0.10 -0.03 -0.09 -0.06 -0.04 -0.01

Q2 Seasonals -0.32 -0.24 -0.15 -0.07 -0.01 0.11 0.17 0.19 0.18 0.15

Q3 Seasonals -0.04 -0.06 -0.10 -0.08 -0.04 0.04 0.09 0.07 0.06 0.06

Q4 Seasonals 0.39 0.29 0.19 0.06 -0.05 -0.13 -0.16 -0.20 -0.20 -0.21

Estimates from a regression of seasonal components on year dummy variables. Point estimates are

multiplied by 100. Bold face font denotes statistical signi�cance at the 95% level. Standard errors

are clustered within cross sections. Seasonals estimated using a 3 � 9 �lter.

Tables 13 through 15 below exhibit the point estimates of the dummy variables for the

March 2009, June 2009, and September 2009 vintages. In each case, distortion in the seasonal

components is not that evident.

Table 13: Regression Test for Distortion in Multivariate Seasonals, March 2009 vintage

Depend. Var. 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Q1 Seasonals -0.19 -0.16 -0.11 -0.06 -0.04 0.04 0.11 0.13 0.15 0.12

Q2 Seasonals 0.02 0.01 -0.01 -0.05 -0.04 0.01 0.06 0.04 0.00 -0.04

Q3 Seasonals 0.30 0.21 0.11 0.03 -0.04 -0.07 -0.10 -0.14 -0.16 -0.14

Q4 Seasonals -0.13 -0.06 0.00 0.08 0.11 0.02 -0.06 -0.03 0.01 0.05

Estimates from a regression of seasonal components on year dummy variables. Point estimates are

multiplied by 100. Bold face font denotes statistical signi�cance at the 95% level. Standard errors

are clustered within cross sections. Seasonals estimated using a 3 � 9 �lter.

4.3 Revisions to Seasonal Components.

Seasonal components at the endpoints of a time series are either based on asymmetric moving

averages (as in conventional univariate X-11) or they are based on symmetric �lters using
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Table 14: Regression Test for Distortion in Multivariate Seasonals, June 2009 vintage

Depend. Var. 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Q1 Seasonals 0.08 0.06 0.02 -0.04 -0.06 -0.02 0.03 0.02 -0.02 -0.07

Q2 Seasonals 0.33 0.23 0.13 0.03 -0.05 -0.10 -0.12 -0.15 -0.16 -0.15

Q3 Seasonals -0.08 -0.03 0.03 0.09 0.11 -0.01 -0.08 -0.06 -0.01 0.04

Q4 Seasonals -0.33 -0.26 -0.17 -0.08 -0.01 0.12 0.18 0.19 0.18 0.18

Estimates from a regression of seasonal components on year dummy variables. Point estimates are

multiplied by 100. Bold face font denotes statistical signi�cance at the 95% level. Standard errors

are clustered within cross sections. Seasonals estimated using a 3 � 9 �lter.

Table 15: Regression Test for Distortion in Multivariate Seasonals, September 2009 vintage

Depend. Var. 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Q1 Seasonals 0.28 0.20 0.10 0.00 -0.07 -0.09 -0.09 -0.10 -0.12 -0.11

Q2 Seasonals -0.08 -0.02 0.03 0.09 0.10 -0.02 -0.09 -0.05 0.00 0.03

Q3 Seasonals -0.28 -0.21 -0.13 -0.06 0.00 0.10 0.15 0.16 0.15 0.13

Q4 Seasonals 0.08 0.04 -0.01 -0.03 -0.03 0.01 0.03 0.00 -0.03 -0.05

Estimates from a regression of seasonal components on year dummy variables. Point estimates are

multiplied by 100. Bold face font denotes statistical signi�cance at the 95% level. Standard errors

are clustered within cross sections. Seasonals estimated using a 3 � 9 �lter.
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forecasted data (as in X-11-ARIMA and later versions of X-11). As more data become

available, those seasonal components (that were previously at the end of the time series) are

re-estimated as the new additional data are used in the estimation procedure. Revisions to

seasonal components may also come about because of revisions in the underlying data itself.

Revisions to seasonal components are likely to be of concern to data compilers and

users relying on timely data. Fixler and Grimm (2002) and Fixler Grimm and Lee (2003)

show that revisions to seasonal components make a signi�cant contribution to revisions

in the US national accounts. For disaggregate nominal imports the revisions to seasonal

components are on average almost as large as the revisions to the seasonally-adjusted data

(Fixler Grimm and Lee, 2003). We therefore consider how the univariate and multivariate

approaches perform when evaluated according to revisions. Under this metric, a seasonal

adjustment procedure will be viewed positively if the seasonal components exhibit relatively

small revisions.

We begin with a ten year dataset spanning January1989 to December 1998. We update

the sample annually by adding in an additional 12 months of data, and re-estimate the

seasonal components. For the multivariate approach, we use the �rolling window�method

outlined in subsection 2.2 for estimation of the parametric model, using the past 120 months

of data to �t the factor model. We can then compute revisions to these seasonal components.

To �x ideas, let ŝi;j;s (p) denote the seasonal component for the jth month in year s computed

in year s+ p for the ith cross section in the panel. We de�ne the s2 to s1 annual revision to

the seasonal component for month j in year s as follows.

ri;j;s (p2; p1) = ŝi;j;s (p2)� ŝi;j;s (p1) , p2 > p1 � 0:

We consider �rst-to-second annual revisions (i.e. ri;j;s (1; 0)), second-to-third annual revisions

(i.e. ri;j;s (2; 1)), third-to-forth annual revisions (i.e. ri;j;s (3; 2)), and forth-to-�fth annual

revisions (i.e. ri;j;s (3; 2)). We consider two measures of the magnitude of revisions: mean

absolute revisions (MAR) and root mean square revisions (RMSR).

Table 16 exhibits the MARs and RMSRs for the nominal imports dataset over the 1998-

2011 time period. It is apparent that the multivariate approach leads to smaller revisions.

The MARs of the multivariate approach are between 9% and 20% smaller than that of the

univariate approach, while the RMSRs are between 12% and 21% smaller.

5 Concluding Remarks

In this paper we propose a new multivariate approach to seasonal adjustment. The ap-

proach bears all the main hallmarks of the univariate �lter-based methods (such as X-11,

X-11-ARIMA, X-12-ARIMA, and X-13-ARIMA-SEATS), but di¤ers in how the stochastic
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Table 16: Annual Revisions to Seasonal Components, Imports

Univariate (2� 12 �lter)
1st to 2nd 2nd to 3rd 3rd to 4th 4th to 5th 5th to 6th

RMSR 1.46 1.261 1.111 0.758 0.594

MAR 1.16 1.007 0.89 0.615 0.519

Univariate (13 term Henderson �lter)

RMSR 1.279 1.111 0.980 0.707 0.593

MAR 1.019 0.887 0.786 0.574 0.51

Multivariate

RMSR 0.974 0.853 0.761 0.531 0.497

MAR 0.791 0.696 0.624 0.444 0.454

Root mean square revision (RMSR) and mean absolute revision (MAR) seasonal components for

5-digit level goods imports, 1998-2011. Seasonal components are re-estimated every December.

Averages taken across 136 import series. Seasonals estimated using a 3 � 9 �lter.

trend in the time series is conceptualized. Whereas the moving average �lters used in the

univariate methods yield smooth estimates of the trend component, under the multivariate

approach the trend component is modelled using a parametric model of covariation. This

permits the trend to accommodate large, common discontinuities in the cross section of

time series under consideration, such as those brought about by severe recessions. Because

the multivariate approach accommodates these sharp discontinuities in the �tted trends,

the seasonal components are less prone to distortion resulting from severe business cycle

�uctuations than univariate �lter-based seasonal adjustment methods.

Our limited empirical analysis using nominal import data is encouraging. The multi-

variate approach appears to deal with the e¤ects of the recession much better than the

univariate �lter-based methods. However, further empirical analysis is required to analyze

the performance of the procedure in di¤erent contexts.

6 Appendix

6.1 Overview of X-11 Seasonal Adjustment

In this section we outline the conventional seasonal adjustment model. X-11 and its variants

require decomposing the time series into a trend, seasonal and irregular component, using a

sequence of pre-speci�ed moving average �lters.
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� The trend component models low frequency variation in the series. Trend �lters are
weighted averages of consecutive months or quarters.

�An n�m moving average is an m�term simple average taken over n consecutive
periods, with equal weights attributed to each period. An example of a 2 � 12
trend �lter for March 2007 (2007:3) is as follows:

2006:10 + 2006:11 + . . . + 2007:3 + . . . + 2007:8 + 2007:9 +

2006:9 + 2006:10 + . . . + 2007:3 + . . . + 2007:9 + 2007:10

This corresponds to the following weights in the 13 term weighted average:

2006:9 2006:10 2006:11 2006:12 2007:1 2007:2 2007:3

0.042 0.083 0.083 0.083 0.083 0.083 0.083

2007:4 2007:5 2007:6 2007:8 2007:9 2007:10

0.083 0.083 0.083 0.083 0.083 0.042

�The Henderson �lter uses a non-equal weighting scheme. For a 13-term Henderson
�lter, the weights are as follows:

2006:9 2006:10 2006:11 2006:12 2007:1 2007:2 2007:3

-0.019 -0.028 0 0.066 0.147 0.214 0.240

2007:4 2007:5 2007:6 2007:8 2007:9 2007:10

0.214 0.147 0.066 0 -0.028 -0.019

Asymmetric Henderson �lters are possible for the endpoints of the time series.

See chapter 5 of Australian Bureau of Statistics (2005).

� The de-trended series is then used to estimate the seasonal components by taking a
moving average over successive months (or quarters or weeks). Seasonal �lters are

computed using values from the same month or quarter, for example, an estimate

for January would come from a weighted average of the surrounding Januaries. The

seasonal �lters available in X-12-ARIMA consist of seasonal moving averages of consec-

utive values within a given month or quarter. An n�m moving average is an m-term

simple average taken over n consecutive sequential spans. An example of a 3� 5 �lter
for January 2007 (2007:1) is:

2005:1 + 2006:1 + 2007:1 + 2008:1 + 2009:1 +

2004:1 + 2005:1 + 2006:1 + 2007:1 + 2008:1 +

2003:1 + 2004:1 + 2005:1 + 2006:1 + 2007:1

This corresponds to the following weights in the seven term weighted average:

2003:1 2004:1 2005:1 2006:1 2007:1 2008:1 2009:1

0.067 0.133 0.2 0.2 0.2 0.133 0.067

34



� Having obtained the seasonal components for each month or quarter, the seasonal
components are re�ned by recursively de-trending the series for each new set of factors.

That is, the original series xt has the factors subtracted from it and the trend re-

estimated. The series xt is de-trended and the seasonal components re-estimated. The

�nal trend may be based on the Henderson �lter, before making the last estimate of

the seasonal components.

6.2 Conventional factor model estimation

Let X = (xi;t) denote a T �n matrix of the panel data. In matrix notation, the factor model
is

X = F�0 + u (4)

where F is a T �m matrix of stochastic factors, � a n�m matrix of factor loadings, and u

is a T � n matrix of idiosyncratic components. F�0 is a matrix of the common components.
Key identi�cation assumptions can be found in Bai (2003, 2004). However, provided that F,

� and u, are statistically independent, a key assumption is that the idiosyncratic component

is weakly dependent in the following sense (Amengual and Watson, 2007)

Assumption A (Weak dependence in idiosyncratic components)

tr
�
1
nT
uu0
�j
= Op

�
1

min(n;T )

�
for some j � 2.

Any strong-form dependence in the panel is therefore generated by the factor structure,

as implied by the following

Assumption B (Strong dependence in common components)

1
n
�0� = Op (1) ;

1
T 2
F0F = Op (1)

Assumption B ensures that the common factors are non-degenerate and that each factor

has a non-trivial contribution to the variance of the time series. The common factors and

loadings thereby generate strong-form dependence between the cross sections and time se-

ries in the panel. Additional assumptions requiring that the higher order moments of the

stochastic variables are bounded are also required for consistent estimation. We refer the

reader to Bai and Ng (2002) and Bai (2003, 2004) for additional details.

The common factors are modelled as I (1) time series, implying that the variance of

the factors increases with T and hence we require that F0F be scaled by 1
T 2
to ensure it is

bounded in probability under assumption Assumption B. We need not restrict ourselves to

the non-stationary case however: The factors can be I (0) without changing the methods

applied herein. In this case we would have 1
T
F0F = Op (1).
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6.3 Principal components

Under these conditions, the common factors and factor loadings can be identi�ed using

the eigen-decomposition of the covariance matrix. Speci�cally, the �rst m orthonormal

eigenvectors of 1
nT
XX0 (associated with the largest m eigenvalues) multiplied by

p
T provide

estimates of F. This is the �principal components�estimator of the model, and the estimated

factors solve the following problem.

F̂ = argmin
F0
tr
�
1
nT

�
X� 1

T
F0F

0
0X
� �
X� 1

T
F0F

0
0X
�0�

s.t. F00F0 = Im

The estimated common factors F̂ are consistent estimates of F the sense that

T�1



F̂� FH


2 = Op� 1

min(
p
n;T)

�
where H is a positive-de�nite matrix (Bai, 2004). Note that consistent estimation of the

factor space requires that both n ! 1 and T ! 1, but without restriction on the rel-
ative rates of expansion. If the common factors are I (0), the convergence rates slows to

min
�p
n;
p
T
�
(Bai, 2003). In either the I (1) or the I (0) factor case, the factor loadings

can be estimated as �̂ = T�1X0F̂.

6.4 Factor number estimation

Estimation of the factor numberm can be achieved using information criteria. For stationary

panels, the Bai-Ng criteria are of the general form

ICp (k) = ln �̂
2 (k) + k � gnT ;

for penalty functions gnT satisfying gnT ! 0 and min (n; T ) � gnT !1 under the asymptotic

sequence selected. Here �̂2 (k) denotes the estimated variance of the estimated idiosyncratic

component when k factors are included in estimation. Bai and Ng (2002) propose three

penalties that satisfy these rate conditions under general large n and T asymptotics (i.e.

both n!1 and T !1 without restriction on the relative rates of expansion). Speci�cally,

they propose three penalty functions which we give in the Appendix.

The criteria are designed for stationary factors and idiosyncratic components. Bai (2004)

derives di¤erent criteria for the case where the factors are I (1) but the idiosyncratic com-

ponents are I (0). Because there may be a mix of stationary and non-stationary factors

in economic data, we apply the Bai-Ng criteria to �rst di¤erenced data to ensure that the

factors number is consistently estimated.

Model averaging can be used to reduce the e¤ects of model uncertainty on inference

and model prediction (Burnham and Anderson, 2002; Hjort and Klaesksen, 2003). The
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approach is commonly used in forecasting (Hansen, 2008) and inference (Hansen, 2007). In

our empirical application the various penalty functions select very di¤erent fcator numbers.

Hence when estimating the trend component, we average across all model speci�cations using

the Bai-Ng criteria as weights. See the appendix.

6.4.1 Factor Model Selection Criteria

The speci�c Bai-Ng IC (k) model selection criteria are as follows.

ICp1 (k) = ln �̂2 (k) + k � ln(dnT )
dnT

;

ICp2 (k) = ln �̂2 (k) + k � ln(cnT )
dnT

;

ICp3 (k) = ln �̂2 (k) + k � ln(cnT )
cnT

;

where cnT = min (n; T ) ; dnT = nT
n+T

.

6.4.2 Model Averaging

Let IC (j) denote the information criterion obtained with a j�dimensional model. The
weight for model j is given by

wj =
exp (�0:5� IC (j))Prmax
j=0 exp (�0:5� IC (j))

Note that j = 0; : : : ; rmax corresponds to the number of factors, and rmax is the maximum

dimension of the model permitted.
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