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Introduction

There is a large literature that explores the connection between innovations and health care spending

(Chernew and Newhouse (2011)). Understanding the effects of innovation in driving expenditure growth

is important, as growth in spending due to innovation may reflect improvement in patient care and

welfare, rather than inflation, inefficiency, or a less healthy population. Health care innovation has

historically been difficult to measure, as there are hundreds, if not thousands, of unique conditions

and even more treatments that evolve over time. A common approach to measure the effects of

technology on spending is to examine a few specific case studies, though applying this approach to all

new technologies is extremely difficult (See Chernew and Newhouse (2011) for a review). An alternative

approach is to control for measurable drivers of spending (e.g., aging of the population, changing

insurance coverage, changing prices, and rising incomes), where growth in spending that cannot be

explained by these known factors is assumed to be driven by innovation (Schwartz (1987), Newhouse

(1992), Cutler (1995), Smith et al. (2009), and Smith et al. (2022)).1 This approach is referred to as

the residual approach, as innovation is measured as the spending growth that cannot be explained by

other factors, similar to Solow (1957). A limitation of this approach is that other factors such as market

power, inefficiency, or changes in the health system organizations, may also enter the residual, which

would contaminate the contribution of medical innovation.

This paper takes a unique approach to this measurement challenge. Specifically, we use a comprehensive

database on cost-effectiveness studies from the Tufts Cost-Effectiveness Analysis Registry (CEAR) to

proxy for the level of innovation by condition. Cost-effectiveness studies are a well-suited proxy for

innovation as they capture entry of new treatments or exploration of treatments for distinct populations.

This contrasts with other indicators of innovation, such as patents, which may not represent innovations

that are fully developed or even applicable in practice.

To connect the cost-effectiveness data to information on population spending, we use data from the

Bureau of Economic Analysis (BEA) Health Care Satellite Account (HCSA) for the years 2000–2017.

The HCSA is a unique account of national health care spending that decomposes health care spending by

condition (e.g., diabetes, heart attacks) rather than by type of service (e.g., physician offices, hospitals,

or prescription drugs) as is done in the Centers for Medicare and Medicaid Services (CMS) National

Health Expenditure Account (NHEA). This distinction is important, as technologies are typically applied

to specific conditions.

1Related to this approach, some papers have attempted to capture forces that drive technological progress, but this is also

measured at an aggregate national level.
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We connect HCSA’s information on spending at the condition level to information on cost-effectiveness

studies for the associated condition category. The effect of technology is identified by cross-condition

correlations in the relative growth rates in spending and the number of innovations, while controlling

for a variety of factors. Importantly, we include year fixed-effects that account for all common factors

that might affect spending growth across conditions. For example, if hospital or physician consolidation

affects the treatment of many conditions, it would be picked up in the year fixed-effect.

We find a significant relationship between the number of studies and the rate of spending growth by

condition, providing unique evidence consistent with the theory that innovation drives spending growth.

We find that innovation accounts for about 18 percent of the total growth in real spending per capita

(in 2017 dollars), but our estimates range from 13 to 32 percent. These estimates are slightly lower

than recent residual-based studies that suggest innovation accounts for between 25 and 50 percent of

the growth rate in spending. (Smith et al. (2009) and Smith et al. (2022)).2 We argue that the 18

percent contribution to spending growth is likely a lower bound on the actual impact of innovation on

spending for a couple of reasons. First, the number of studies is an imperfect proxy for innovation,

which could lead to some attenuation in the estimate. Second, some innovations are common across

many conditions, which would not be captured by our estimates, which are based on relative growth

rates across conditions.3

The results are robust across a number of alternative specifications, such as controlling for demographic

changes, controlling for 18 broader disease category trends (e.g., circulatory conditions or cancers),

the spending level of the condition, and the initial spending growth of the condition. We also run

alternative estimates where we normalize the number of cost-effectiveness studies across years to account

for an overall growth in cost-effectiveness studies in the literature. Finally, using alternative proxies of

innovation by condition, such as the change in quality of treatments estimated from the cost-effectiveness

studies, we still find a significant and positive relationship between spending growth and these alternative

proxies. Across all of these specifications, we find a strong relationship between measures of innovation

and spending growth.

We also investigate whether innovation affects spending through growth in treated prevalence or in

spending per case. The expected result is not clear because some innovations may be expensive, while

others may be cost-saving or allow for substitution away from costlier services. For example, less invasive

surgical techniques may reduce spending per case case but could increase overall costs if they cause

individuals to seek medical care for previously untreated conditions. We find no correlation between our

proxy for innovation and spending per case or treated prevalence. More likely, the effect is idiosyncratic to

each condition and the effect could be highly dependent on the type of technology. Indeed, Cutler et al.

2The most recent study in this literature, Smith et al. (2022), finds that the share of spending growth attributable to

technology has fallen in recent years to around 30 percent.
3For example, diagnostic technology or the adoption of electronic medical records may help in the treatment of many

conditions, but these innovations would not be accounted for in our estimates as they would be captured by our year

fixed-effects.
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(2022) find that medical spending trajectory varies greatly by medical condition, and this partly depends

on the type of technologies that diffuse (e.g, low-cost or high-cost technologies). Validating this idea, we

do find that the relative cost of new innovations, as reflected in the CEAR cost-effectiveness database,

is significantly related to observed changes in spending growth by condition, where this effect occurs

through spending per case, and not through treated prevalence. In other words, when technologies

appear costly in the CEAR database, this does seem to be reflected in a higher spending per case in the

HCSA.

The findings in this paper have important implications for economic measurement, including measures

of price, output, and productivity. If spending is primarily driven by non-technological factors, then

traditional price measures are well-suited to measure output and productivity for the sector. However, if

spending is driven by innovation, then traditional measures will not accurately reflect consumer welfare

changes (Dynan and Sheiner (2018)). While it is commonly believed that innovation is a key driver of

health care spending growth, most of the evidence is based on empirical studies that make strong as-

sumptions regarding the unexplained health care spending growth. This paper provides unique evidence,

applying alternative assumptions and methods, and similarly concludes that innovation is a significant

driver of spending growth. This is especially important for the pharmaceutical sector, which account

for about 44 percent of the studies in our CEAR database. This reinforces the importance of exploring

alternative measures of price, output and productivity for the health care sector (see Cutler et al. (2022),

Highfill and Bernstein (2019), Weaver et al. (2022), Romley et al. (2020), Eggleston et al. (2019), Dunn

et al. (2022), and Matsumoto et al. (2021)), despite the fact that the measurement issues in health

care are challenging (Sheiner and Malinovskaya (2016), Hall (2017), and Dauda et al. (2022)).
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1. Materials and Methods

This paper uses two main data sources. One data source is the Cost-Effectiveness Analysis Registry

(CEAR) from the Tufts Medical Center. The registry gathers published cost-effectiveness studies and

extracts information on: the intervention (innovation), the control (often a standard of care treatment),

outcomes measured in Quality Adjusted Life Years (QALYs),4 and associated costs of the treatments.

The version of the registry used in this study contains over 7,000 cost-effectiveness studies published

since 1976. The registry aims to be a comprehensive source of cost-effectiveness studies, excluding only

studies that are not published in English and those that do not measure outcomes in QALYs. We drop

articles that were missing disease information, missing QALY information, or outside our sample period.

In total, our sample includes 4,766 articles.5 While the CEAR database covers all types of innovations,

innovations in the pharmaceutical sector are especially important and account for 44 percent of the

observations in the CEAR database.

The second data source is from the BEA’s Health Care Satellite Account (HCSA) (Dunn et al. (2015)

and Dunn et al. (2018)). The account combines large health care claims data, amounting to millions of

patients and billions of claims, to report a representative estimate of spending by disease for the entire

U.S. population. Using the HCSA data, we construct measures of the 5-year per capita growth rate of

spending, spending per case, and treated prevalence.6 We use the years 2000–2017, but because of a

change in disease coding after 2015 (from ICD-9 to ICD-10 disease classification) there is a discontinuity

between 2015 and 2016. Therefore, our main analysis focuses on the years 2000–2015, and we examine

the full period 2000–2017 as a robustness exercise in the appendix. All estimates are reported in 2017

dollars by applying the GDP price index.

The main dependent variable is the 5-year growth rate in spending per capita. We focus primarily on

5-year growth rates as it may take time for technologies to diffuse and impact spending. Because we

measure 5-year growth rates, our main regressions will include the years 2005–2015.

The main variable of interest is the number of studies for a given condition. To account for the diffusion

period, our measure of the number of studies is the lag of the number of studies over the past 5 years

for that condition category. For instance, for hypertension in the year 2015, we look at the total number

of studies related to treatments of hypertension over the previous 5 years (2010–2014).

4A QALY unit accounts for both mortality and quality of life. One QALY indicates one year of life in perfect health.
5The breakdown of observations in the CEAR database are the following: We begin with 7,287 CEAR articles. Exactly 871

articles were dropped due to missing disease information, another 408 were dropped due to irreconcilable disagreements

between two Tufts condition mapping methodologies, 1,068 articles were dropped due to missing QALY information, and

174 articles were dropped for being outside the sample period.

We obtain very similar results if the 1,068 articles that are missing QALYs are added back into the main analysis. However,

we drop those articles in our preferred specification so that our estimates using the QALYs as a proxy for innovation uses

a consistent sample.
6Treated prevalence is measured as spending per capita divided by spending per case.
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Although the condition categories reported in the Tufts registry do not correspond precisely to the

260 Clinical Classification Software (CCS) categories reported in the HCSA, we construct a mapping

at the most detailed level possible, with the understanding that the mapping may be imperfect. We

map the conditions two ways. First, the Tufts’ “Disease or Health Intervention” variable was manually

mapped to CCS categories based on the text reported in the cost effectiveness study (e.g., “Disease

or Health Intervention=Hypertension” was manually mapped to both CCS=98 (Hypertension), and

CCS=99 (Hypertension with complications)). Second, we mapped the Tufts data to CCS categories

using their listed 3-digit ICD-10 codes. Subsequently, the CCS mappings between the two methodologies

were compared for equivalency. There were 3,142 articles where the manual mapping and mapping based

on the 3-digit ICD-10 codes agreed on a single CCS category. For the remaining 1,624 articles where

there was a disagreement in the mapping, the CCS category with the larger average spending over the

(2000-17) period was assigned.7

As the mapping between the Tufts disease conditions and the CCS categories may be imperfect and

technological innovations may spillover to related conditions, we use a broader disease classification

that categorizes the 260 conditions into more encompassing 64 Agency for Healthcare Research and

Quality (AHRQ) categories (e.g., CCS=Breast Cancer, and CCS=Lung Cancer would both map to

AHRQ=Cancers).

Using these broader 64 categories, we create a variable of spillover studies, where we look at the average

number of studies for other conditions in the broader category over the past 5 years. The higher this

value, the more studies there are on related conditions.8

In addition to the number of studies, we also explore alternative proxies of innovation by looking at

measures of quality in the cost-effectiveness studies. In particular, we measure the median difference in

QALYs (between the intervention and the comparator) from innovations by condition in each year. We

then average the difference in QALYs across years. We similarly examine incremental cost differences

between innovative and comparative treatments. As we do not have measures of the importance of these

individual innovations nor how the associated technologies diffuse, these additional measures should also

be viewed as proxies of innovation and cost changes related to innovation.

7Often the difference in CCS condition categories assigned by the two methods of mapping are similar, such as “diabetes

without complications” and “diabetes with complications.”
8As an example, suppose conditions D1, D2, and D3 are all in the same AHRQ disease category. Let ND

1 , ND
2 , and

ND
3 be the number of studies observed for each of these conditions. In this case, the spillover for D1, N

D
2 , and ND

3 are

calculated as
ND

2 +ND
3

2
,

ND
1 +ND

3
2

, and
ND

1 +ND
2

2
, respectively.
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2. Descriptive Statistics

Table 1 displays total spending and total number of research studies over the entire sample period from

2000-2017 by 18 broad disease categories. In general, the categories with the most spending also have

a higher number of research studies. However, there is a lot of heterogeneity in the number of studies

and total spending. Neoplasms, which includes cancer, contains the largest number of studies, but does

not account for the largest expenditures. In contrast, the symptoms category, which primarily includes

preventative services such as routine checkups, accounts for a large share of spending, but observes very

few studies in this category.9 These broad condition categories are useful for summary purposes, but are

too broad to look at the relationship between innovation and spending growth. Headache and glaucoma

both fall under the category of “diseases of the nervous system,” but the technologies to treat these two

conditions are distinct. For this reason, we focus our analysis on the more disaggregated CCS condition

categories, that include 260 conditions, but allow for some technological spillover by also looking at 64

broader AHRQ condition categories.

For the 260 condition categories there is a lot of heterogeneity in the number of studies we see per

condition in any 5-year span. Figure 1 shows the distribution of the number of studies by CCS category

for 5 years prior to 2015. The distribution shows that a little over 40 percent of conditions have no

studies. There is a skewed distribution of the number of studies across conditions, where we have

winsorized the histogram at 50. This shows a wide distribution in the number of studies observed.

Next we turn to variation in spending growth. Figure 2 graphs 10 condition categories which had the

largest average spending (level) per capita over the period of study. We also include hepatitis and cystic

fibrosis, two conditions with substantial research and improvements in treatment over the past couple

of decades. The figure demonstrates that there is wide variation in spending trends. It is this difference

in spending growth rates and number of studies across conditions that will help identify the effect on

spending variation.

9It is challenging to link to new technologies in the preventative medicine category and the category of “residual codes.”

For this reason, we drop these particular categories in some of our robustness checks.
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Table 1. Total Spending and Count of Research Studies by Broad Condition Category

Dollars (Bil) Num of Studies

Circulatory conditions (e.g., hypertension) 3,842.3 717

Routine care, signs and symptoms (e.g., preventative care) 3,579.5 16

Musculoskeletal conditions (e.g., back problems and arthritis) 2,795.2 479

Respitory conditions (e.g., COPD and asthma) 2,478.5 259

Nervous system conditions (e.g., cataracts and epilepsy) 2,088.4 276

Endocrine system conditions (e.g., diabetes and high cholesterol) 1,922.1 436

Injury and poisoning (e.g., trauma) 1,880 151

Neoplasms (e.g., cancers and tumors) 1,879.8 1,013

Genitourinary conditions (e.g., kidney and reproductive diseases) 1,747.9 190

Digestive conditions (e.g., gastrointestinal disorders and appendicitis) 1,611.4 198

Mental illness (e.g., depression and dementia) 1,290.8 295

Infectious diseases (e.g., septicemia and HIV) 1,176 554

Skin conditions (e.g., acne and infections) 714.5 57

Pregnancy (e.g., deliveries and contraceptives) 668.9 19

Residual codes; unclassified; 569.5 56

Blood disorders (e.g., anemia) 340.4 24

Perinatal conditions (e.g., low birth weight) 126.9 11

Congenital anomalies (e.g., cardiac anomalies) 124.1 15

Total 28,836 4,766

Notes: This table shows total spending in the HCSA scaled to match the National Income and Product Accounts 
(NIPA) estimates of health care spending, and total number of studies using the CEAR by broad disease category, 
covering the years 2000 to 2017.
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Figure 1. Density of Number of Studies in CCS Category over the Past 5 Years

Notes: This figure shows the cumulative distribution for the cumulative number of studies across the 260 CCS categories in

2015. The figure shows that over 40 percent of the categories have no associated cost-effectiveness studies. The number

of studies for a particular category is highly skewed. The figure shows a mass point on 50 because we winsorized the

distribution at 50.
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Figure 2. Spending Growth Per Capita Trends for 12 Conditions

Notes: This figure shows real spending trends for the 12 CCS conditions, although only 5 of the most recognizable conditions

are labeled. The twelve conditions reported in order of average level of spending include: medical exam/evaluation;

spondylosis; hypertension; other connective tissue; residual codes; other screening; coronary atherosclerosis; diabetes

without complication; other non-traumatic joint disorder; rehabilitation care; hepatitis; and cystic fibrosis. The first 10

were selected because they had the highest average spending per capita over this time period, while hepatitis and cystic

fibrosis are known to have major technological advances over this period. Spending has been deflated to 2017 dollars using

the GDP price index from BEA. The figure demonstrates a wide range in variation in spending trends by condition.

While there is considerable variation in the number of studies and spending growth, the goal of this paper

is to see how those correlate. The top 10 conditions in terms of spending growth (in percentage terms)

include conditions with substantial innovation. These include cystic fibrosis, hepatitis C (graphed above),

and multiple sclerosis. Cystic fibrosis has had breakthrough innovations such as Kalydeco®, Orkambi®,

Symdeko®, and Trikafta®, costing anywhere between $100,000 and $350,000 a year (Tice et al. (2020)).

For multiple sclerosis, breakthroughs in the development of monoclonal antibody therapies have led to

drugs such as Tysabri®, Ocrevus®, Kesimpta®, Campath®, and Leustatin® being approved since 2004

(Olek and Mowry (2022)). For hepatitis C, in 2014, the launch of Sovaldi®, sparked public uproar as

it crowned itself the costliest drug for the Medicare program, totaling $94,000 a year (or $4.5 billion in

a single year for Medicare) (Olek and Mowry (2015)). While these examples suggest that innovation is

driving some spending growth, our goal is to determine the correlation across all conditions.
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Table 2 provides some descriptive statistics that hint at the main result in this paper. The columns in

Table 2 show descriptive statistics for key variables broken out in each panel based on the number of

studies observed. The first panel includes observations where there are zero studies observed for the

corresponding CCS condition category for the past 5 years; the second panel provides the descriptive

statistics for CCS categories with between one and five studies; and the third panel provides descriptive

statistics for conditions where there are more than five studies over the past 5 years. The descrip-

tive statistics show that the mean spending growth rate for CCS categories grows faster for condition

categories where there is one and five studies (growing at 14.3 percent over a 5-year period) versus

conditions where there are no associated studies (growing just 8.9 percent per year). The next column

reports the average difference in QALYs (between the intervention and comparator) per study, where

the value is set to zero if there are no studies. The average QALY difference when there are between

one and five studies is large, 0.47, but it is highly skewed, with the median gain in QALYs of 0.07. The

average difference in QALYs highlights that these studies are typically associated with improvements in

treatment quality, although the exact diffusion and importance of these QALY gains is not observed.10

Table 2. Descriptive Statistics by Number of Studies in the Past 5 Years

Spend Growth Num. of Studies Avg. Growth QALY Num. of Spill. Studies

Zero Studies

mean 0.0894 0 0 2.972

p50 0.0600 0 0 1.412

sd 0.237 0 0 4.030

count 1575 1575 1575 1575

One to Five Studies

mean 0.143 2.458 0.478 4.280

p50 0.0957 2 0.0700 2.155

sd 0.257 1.386 0.849 7.696

count 740 740 740 740

More than Five Studies

mean 0.141 18.14 0.336 5.143

p50 0.105 13 0.166 3.500

sd 0.238 16.63 0.483 9.031

count 553 553 553 553

Notes: This table shows descriptive statistics based on the number of studies in a CCS category over the past 5 years. The 
three categories capture the number of studies where the categories are zero, one to five, or more than five research studies. 
The table shows that the growth rates in spending at the mean and median are lower for those condition categories that have 
no research studies, compared to those categories that have between one and five or more than five. These es-timates exclude 
outlier 5-year growth rates that are above 200 percent, which are also removed from our regression analysis.

10For example, we do not know if the treatment is relevant for a small or large population. We use the number of studies

as our proxy rather than QALYs, as it is less skewed and can more easily be normalized to account for changes in the

number of studies over time.
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The statistics in Table 2 also suggests that multivariate analysis may be important for a few reasons.

First, there is a lot of variation in the spending growth rate, as reflected in the standard deviation, so

it may be important to include additional controls, such as year fixed-effects that would account for

overall medical care inflation, and other common factors affecting the growth rate across conditions.

Second, there is a lot of variation in the number of spillover studies, so it may be important to account

for this additional proxy of innovation for each condition. For example, for the zero-studies category,

the average number of spillover studies is around 3.



12

3. Analytical Framework

The regression takes the following functional form:

Yc,t = α1 · log(Num.ofStudies+1)+α2 · log(Num.ofSpilloverStudies+1)+β ·Xc,t+γt+εc,t (1)

The variable Yc,t is the growth rate over the past 5 years in per capita spending, for condition c in

year t. To measure how the number of studies over the prior five years is related to spending growth,

the main covariates are log(Num.ofStudies + 1) and log(Num.ofSpilloverStudies + 1). In other

words, equation 1 is testing whether growth rates are faster for those CCS conditions or AHRQ condition

groups where we observe more associated cost-effectiveness studies. For example, there have been many

studies for hepatitis and we observe subsequent rapid spending growth. We focus on a simple count on

the number of studies rather than QALYs or costs observed in the cost-effectiveness studies for a few

reasons. First, there is a lot of heterogeneity in the measurement of costs and QALYs across studies,

for example, the assumptions made or populations used can vary considerably. Second, innovations can

impact costs and QALYs in heterogeneous ways, making them noisy measures of “innovation.” For

example, a new drug that cheaply replaces a high-cost procedure with slightly worse outcomes may

reduce QALYs and costs. Meanwhile, a highly effective but expensive new drug may increase both costs

and QALYs. Both of these may represent innovations that improve welfare, but their impact on costs

and QALYs may cancel out.

We include covariates to account for potential confounding factors. Arguably the most important

variable is the year fixed-effects, γt, which captures the aggregate growth rate that is common across

all conditions. The γt control distinguishes our analysis from other work in the literature because it

accounts for numerous common factors that could influence the aggregate growth in spending such

as changes in income, medical inflation, insurance and other factors that affect spending on multiple

conditions that are common across conditions. This differs from other work in the literature that

attempts to control for these factors using only aggregate data, which requires strong assumptions

regarding factors affecting aggregate growth rates in the medical care sector. In those studies, growth

due to changes in market power or inefficiency in the health care sector may be difficult to control for

and enter the aggregate residual, along with the effects of technological change. In contrast, we are

using cross-condition variation controlling for many of these aggregate trends using year fixed-effects.

Although the Tufts CEAR data is comprehensive and includes studies from the 1970s, the number

of cost-effectiveness studies increased substantially over time, with about 95 percent of the studies

appearing over the 2000–2015 period. Because we include year fixed-effects, the growth in the number

of studies has little effect on the estimates, as we are measuring the effect on the relative growth rates

across conditions. However, we also include a robustness check where we normalize the number of

studies in each year.
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Xc,t includes additional controls that might have differential effects on the growth rate of each condition.

We include predicted spending growth based on demographic changes, by condition, described in more

detail below. In some specifications we also include the initial annual spending per capita of the

condition, the initial spending per case of that condition, broad condition category trends (the condition

categorization with 18 categories as in Table 1), and the initial 3-year growth rate in spending for the

condition. The error term in the equation is εc,t.

One variable that may be unique to each condition is demographic factors such as age and sex. For

instance, the aging of the population may have a larger effect on circulatory conditions, relative to

conditions related to pregnancy. Adding an age variable directly into our regression model for each

condition is not possible because there would be too many covariates (e.g., average population age

interacted with each condition category). Instead, we use the Medical Expenditure Panel Survey (MEPS)

to measure spending by each age and sex group for each condition. The MEPS has a relatively small

sample size (around 30,000 individuals), but we combine 19 years (2001–2019) of the MEPS data to

estimate average spending for each age-sex category by condition, where the average does not vary

over time.11 We use the change in the population age-sex demographics to predict spending growth for

each condition based on demographic changes alone (see appendix section 8.1.1 for additional details).

We include this predicted change in spending due to demographics as a control in our main regression

specification.

Our main analysis includes the years 2000–2015, and estimates are clustered by CCS condition category.

We get similar results if we select specific years spaced out in 5-year increments (i.e., 2005, 2010, and

2015). We also report results using the full sample from 2000–2017 in the appendix.

11The MEPS sample size is too small to estimate spending by condition by year and leads to noisy estimates (Dunn et al.

(2015)).
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4. Results and Implications

4.1. Regression Results

The results of the regression analysis are shown in Table 3. The first panel shows the relationship

between spending growth and a single proxy for innovation: the log of the number of studies. The

specifications differ across columns, as described in the top row of the table. The first baseline model in

the first column includes year fixed-effects and the demographic control. The relationship is positive and

statistically significant, with an elasticity implying that a 10 percent increase in the number of studies

would lead to a 0.2 percent faster spending growth over a 5-year period. The second column removes the

demographic control. The third column includes the demographic control and adds additional controls

for the amount of spending in the CCS category and includes 18 broad condition category trends. The

fourth column is the same as the third column but includes the initial 3-year growth rate in spending

for the condition.12 The fifth column applies an instrumental variable (IV) to the log of the number

of studies to account for potential measurement error in our proxy for innovation, which may create

attenuation bias. The instruments we apply are alternative measures of innovation from the CEAR

database using incremental QALY measures over the past 5 years, which is not necessarily associated

with the number of studies. The sixth column is the same as the baseline but is weighted by the log of

spending by condition.13 The estimates are positive and significant across specifications.

The second panel of estimates is the same as the first panel but includes two proxies for innovation,

including the number of studies, and also spillover effects from other conditions in the same AHRQ

condition category. We find a positive relationship on both variables across specifications, although the

spillover effect loses statistical significance as additional controls are added (column 3). The third and

fourth panels of estimates are the same as the first and second, but the number of studies are normalized

to be the same across years. The results are qualitatively the same as those in the first two panels, but

the standard errors are slightly smaller.14

12Similar results are obtained when a 5-year initial growth rate is included.
13Given that spending by condition is highly skewed, applying weights on the log of spending helps to weight higher cost

conditions more.
14We obtain similar results when estimating on the full sample covering the time period from 2000 to 2017 (see Table A2).
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Table 3. Regression of 5-Year Spending Growth Rates on Counts of the Number of Studies

and Studies in Related Categories: Alternative Specifications using Full Sample

Model Description Baseline No Demo. Controls Cont. & Trend IV Weighted

Single Proxy

Spend Spend Spend Spend Spend Spend

Log(Num Studies+1) 0.0233∗∗ 0.0232∗∗ 0.0254∗∗ 0.0129 0.0552∗∗∗ 0.0223∗∗

(0.00970) (0.00944) (0.0111) (0.00935) (0.0144) (0.00967)

Observations 2868 2868 2868 2868 2868 2868

Adjusted R2 0.021 0.022 0.119 0.245 0.003 0.023

Two Proxies

Log(Num Studies+1) 0.0224∗∗ 0.0212∗∗ 0.0275∗∗ 0.0148∗∗∗ 0.0531∗∗∗ 0.0216∗∗

(0.00961) (0.00930) (0.0115) (0.00482) (0.0144) (0.00960)

Other Log(Num 0.0237∗ 0.0221∗ 0.0204 0.0179∗∗∗ 0.0219∗ 0.0231∗

Studies+1) (0.0122) (0.0114) (0.0146) (0.00665) (0.0124) (0.0122)

Observations 2868 2868 2868 2868 2868 2868

Adjusted R2 0.027 0.027 0.121 0.247 0.010 0.029

Single Proxy - Normalized

Log(Num Studies+1) 0.0217∗∗∗ 0.0216∗∗∗ 0.0250∗∗∗ 0.0137∗ 0.0324∗∗ 0.0209∗∗

(0.00831) (0.00811) (0.00953) (0.00772) (0.0130) (0.00830)

Observations 2868 2868 2868 2868 2868 2868

Adjusted R2 0.023 0.024 0.122 0.246 0.021 0.025

Two Proxies - Normalized

Log(Num Studies+1) 0.0211∗∗ 0.0198∗∗ 0.0278∗∗∗ 0.0161∗∗∗ 0.0304∗∗ 0.0205∗∗

(0.00825) (0.00800) (0.00980) (0.00408) (0.0136) (0.00826)

Other Log(Num 0.0238∗∗ 0.0220∗∗ 0.0245∗ 0.0210∗∗∗ 0.0235∗∗ 0.0233∗∗

Studies+1) (0.0104) (0.00970) (0.0130) (0.00564) (0.0104) (0.0103)

Observations 2868 2868 2868 2868 2868 2868

Adjusted R2 0.032 0.032 0.127 0.249 0.030 0.033

Notes: The table shows results from regressions of real spending growth per capita on proxies of innovation based on the 
counts of the number of studies. All regressions include year fixed-effects. The columns differ by the covariates included 
in the specification, with a description in the top column. The baseline specification includes the demographic covariate, 
second column excludes the demographic covariate, the third column includes addtional controls, and the fourth column 
includes additional controls and the initial 3-year growth rate of the condition. The fifth column applies an IV estimation, 
where the IV is the average QALY from cost-effectiveness studies over the past 5 years. The sixth column is the baseline 
model where the regression is weighted by the log of the average spending. The specification also differs by panel. The 
first panel includes a single proxy for innovation (log number of studies) and the second panel includes two proxies (log 
number of spillover studies). The last two panels repeat the first two panel, but the number of studies is normalized across 
years. Standard errors are in parentheses and are clustered by CCS Condition Category.
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4.2. Implications

The regression estimates show a strong positive relationship between our innovation proxies and the

rate of spending growth. To determine the share of the spending growth attributable to innovations, we

compare the observed growth rates to counterfactual growth rates where the number of cost-effectiveness

studies is set to zero. Specifically, after estimating equation (1) we compute the counterfactual growth

rate if no innovation occurred as reflected by zero cost-effectiveness studies:

Ŷ ALT
c,t = α̂1 · log(0 + 1) + α̂2 · log(0 + 1) + ˆβ ·Xc,t + γ̂t + ε̂c,t = γ̂t + ε̂c,t (2)

Using the alternative growth rate calculated from equation (2), we then recompute the aggregate

counterfactual growth rate over the entire period, from 2000 to 2015. An implicit assumption of this

counterfactual is that innovation only affects spending growth of conditions that have a positive number

of studies or spillover studies.

Table 4 shows the results of this analysis under a variety of different assumptions following the results

in Table 3. The top of the table describes the components of the growth rate. The real spending per

capita was $4,409 in 2000, and grew to $6,911 in 2015. This translates into a total growth of $2,502, or

a 3.0 percent growth rate on an annual basis. The bottom of Table 4 calculates the share of this growth

attributable to our proxies for innovation across a variety of scenarios. For each scenario, we report the

analysis that directly uses the number of studies, but also a secondary analysis where the number of

studies are normalized to account for overall trends in the number of studies, as discussed previously.

The baseline scenario applies the regression results reported in column (1) of the second panel of Table

3. The estimates show 18.4 percent of the growth is attributable to the innovation proxy. A similar

result is obtained when we normalize the proxy for innovation, shown in column (2) of Table 4, where

we find that about 17.2 percent of the growth is attributable to the proxies for innovation.

Next we conduct the same calculation, but using the alternative specifications in Table 3. In the second

scenario we remove our demographic control; in the third we add additional controls; in the fourth

we include the additional controls and the initial trend in spending for each condition; in the fifth we

apply IV for the number of studies; and in the sixth we apply weights. In each case, we also conduct

these calculations with a normalized innovation proxy, which adjusts for the number of cost-effectiveness

studies increasing over time. We consistently find that innovation accounts for a significant fraction of

spending growth, ranging from 12.9 to 31.8 percent of the total growth over the 2000 to 2015 period.
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Table 4. Share of Spending Growth Attributable to Innovation Based on Number of Studies

as Proxy for Innovation

(in 2017 Dollars)

Real Spending Per Capita in 2000 4,409

Real Spending Per Capita in 2015 6,911

Growth in Real Spending Per Capita 2000-15 2,502

Annual Growth Rate in Real Spending Per Capita 3.0 %

Share of Spending Growth Attributable to:

Scenarios Innovation Proxy Normalized Innovation Proxy

1. Baseline 0.184 0.172

2. with No Demographics 0.173 0.160

3. with Additional Controls 0.196 0.203

4. with Additional Controls and Initial Trend 0.129 0.141

5. with IV for Num. of Studies 0.318 0.211

6. with Basic Controls and Weights 0.178 0.167

Notes: The table shows the contribution of technology to spending growth by calculating the hypothetical spending growth 
rate assuming the number of cost-effectiveness studies is set to zero. The first column uses the regressions where the 
actual number of studies are used, while the second column normalizes the total number of studies across years, to account 
for the fact that the CEAR database is growing substantially over time. The scenarios correspond to the regression results 
in Table 3 and include: (1) baseline model with demographic control; (2) same as (1) but without demographic control;

(3) same as (1) but with broad disease chapter fixed-effects, as well as spending per capita and spending per case in the 
initial year; (4) same as (3) but includes a control for the growth rate for the initial 3 years; (5) baseline estimate with 
IV applied; and (6) same as (1) but weights based on the log of the spending by disease, so that the larger spending 
categories count more.
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5. Mechanisms

While the residual approach necessarily takes a broad view of innovation—it is capturing otherwise

unexplained factors—the literature on innovation in medical spending more broadly has paid particular

attention to how innovation impacts spending and the quality of care. First, it is unclear whether a

new innovation will improve the quality of care. For example, there is a lot of interest in “follow-on,”

“me-too,” and “ever-greening” drugs, which allow manufacturers to capture rents but do not improve

patient welfare (Curtiss (2005), Hemphill and Sampat (2012), Fojo et al. (2014), Tabernero (2015),

Gastala et al. (2016), and van der Gronde et al. (2017)). Second, innovations may not necessarily

increase costs. For example, a new drug that reduces the number of doctors visits may reduce costs

(Ridker et al. (2008) and Giugliano et al. (2020)). Finally, if an innovation allows treatments of otherwise

untreatable conditions or populations (or with fewer side-effects) it could increase the number of people

treated without increasing the spending per case (Chernew et al. (1997) and Chernew and Newhouse

(2011)). In this section, we explore these different mechanisms.

5.1. Role of Cost and QALY Differences

The main analysis uses the number of studies as a proxy for innovation. We focus on the number of

studies, as it is easily measured and can be normalized to account for the growth in the number of

studies over time. However, the cost-effectiveness database can be used to form alternative proxies.

The theoretical reason that new innovations drive spending higher is related to both the high costs from

new innovations, which often cost more than prior treatments, and the higher quality from innovations,

which drive demand for new treatments. In this section we look more directly at measures of costs and

quality from the cost-effectiveness studies to see if we can identify some expected patterns.

The cost measure in the CEAR database is the average incremental cost of innovations relative to the

comparison treatment in the database over the past 5 years. For the measure of quality, we use the

average incremental QALYs of innovations relative to the comparison treatment over the past 5 years.

If innovations are distinct, we might think the QALYs and costs are additive, so we also compute the

total QALYs and total costs across studies. As the proxies are imperfect, we enter them in different

combinations in our baseline regression model to investigate correlations.

Table 5 uses the baseline specification and examines how these variables relate to spending growth.

Column (1) repeats our main specification using the number of studies. Column (2) removes the

log(NumStudies+ 1) as a covariate and includes the average QALY. We see that a direct measure of

QALYs is significantly related to spending growth. Column (3) includes both log(Num.Studies + 1)

and the average QALY change. The average QALY change is still positive, but insignificant, likely due

to collinearity between QALY change and the number of studies. While the residual approach attempts

to capture the effect of innovation on spending, it may be the case that innovations are not quality

improving.
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The positive result on the number of QALYs is reassuring as a separate proxy of innovation, and it also

provides some rough evidence that spending growth is correlated with higher quality treatments.15

The fourth column is the same as column (3) but includes the average cost change from new innovations.

We find the cost of new treatments to be highly significant. This is reassuring and suggests that when

a condition has relatively high cost innovations (as measured in the cost-effectiveness data), that shows

up in higher spending growth in the HCSA.

Finally, it may be the case that quality across studies is additive. For example, if each observation in

the CEAR data was for a separate new innovation. In specification (5) we include both an average

QALY measure and a total QALY measure, which adds up QALYs across studies, and we find the total

QALY measure is statistically significant, while the average QALY change is not. This provides some

suggestive evidence that QALY gains reported across multiple studies may be more important than just

the average QALY gain.16 Similarly, costs may also be additive. In column (6) we include the total

and average cost change, and find the total cost change and total QALY change to be statistically

significant.

While we chose to focus on the number of studies as the preferred proxy for innovation, it is worth noting

that using QALYs as a proxy for innovation produces very similar results. In particular, the specification

in column (5) of Table 5 implies that innovation accounts for about 15 percent of spending growth.

5.2. Decomposition of Spending Growth Into Treated Prevalence and Spending per

Case

Another related question is whether this spending growth is driven by spending per case or by the number

of treated cases (Chernew and Newhouse (2011)), which we analyze in more detail in appendix section

9. If spending growth is driven primarily through an increase in spending per case, then this suggests

that technology may be driving spending growth primarily through high-cost treatments. Across several

specifications, we find no consistent evidence that innovation only affects spending per case or treated

prevalence. A potential explanation may be that technologies have unique effects depending on the

condition. For example, rheumatoid arthritis drugs introduced over this time period were very costly,

and likely drove the spending per case up. Alternatively, the diffusion of improved anti-cholesterol

drugs potentially drove up treated prevalence over this time period as more people are coded as having

high cholesterol, which could have reduced the average spending per case of cholesterol over time.

Anti-cholesterol drugs may also have reduced costly heart disease, also reducing spending per case.

15In appendix table A3, we recreate Table 3, but using QALYs as our measure of innovation. Results are not as robust as

in Table 3, but most specifications are still positive and significant.
16This may be due to multiple innovations, or the additional studies may provide greater confidence in the QALY gains of

a specific treatment.
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Table 5. Regression of Spend 5-Year Growth Rate on Cost, QALY and Proxies of Innovation

(1) (2) (3) (3) (4) (5) (6)

Log(Num Studies+1) 0.0224∗∗ 0.0185∗∗ 0.0134

(0.00961) (0.00923) (0.00904)

Other Log(Num 0.0237∗ 0.0251∗∗ 0.0240∗∗ 0.0228∗ 0.0227∗ 0.0222∗

Studies+1) (0.0122) (0.0124) (0.0122) (0.0121) (0.0121) (0.0121)

Avg. Cost Change 0.0704∗∗∗ 0.00431

(0.0267) (0.0250)

Avg. QALY Change 0.0385∗∗ 0.0285 0.0261 0.00387 0.00456

(0.0183) (0.0175) (0.0173) (0.0180) (0.0178)

Tot. QALY Change 0.00848∗∗∗ 0.00686∗∗∗

(0.00214) (0.00209)

Total Cost Change 0.0139∗∗∗

(0.00514)

Observations 2868 2868 2868 2868 2868 2868

Adjusted R2 0.027 0.025 0.030 0.034 0.034 0.040

Notes: The table shows results from regressions of real spending growth per capita on proxies of innovation. In 
addition to the proxies of innovation based on study counts, the table reports alternative proxies based on changes in 
QALYs and costs of innovations, as reported in studies in the CEAR database. Standard errors are in parentheses and are 
clustered by CCS Condition Category.

While the effect of innovation on spending per case and treated prevalence may be idiosyncratic, we do

find that the relationship between the CEAR measured incremental treatment cost of a new innovation 
is statistically significantly related to the average spending per case measured in the HCSA, as shown in
appendix Table A6. The incremental cost of a new innovation does not affect the treated prevalence, 
as shown in appendix Table A7. This suggests that the CEAR data is able to separate costly new

innovations from low cost innovations or cost-reducing innovation.
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6. Discussion

This paper provides two contributions. First, it provides new evidence of the role that innovation has

on spending growth. Prior research in this area measures innovation through a residual. The residual

approach relies on the assumption that all unexplained growth in spending is driven by technology.

However, factors such as inefficiency, market power, and structural changes in the health care system

may be difficult to account for in the aggregate residual. We are able to construct a more direct proxy

for innovation at the condition-level, and we find a strong association between our innovation proxy and

spending growth. Importantly, our identification strategy controls for year fixed-effects, which directly

account for all unobserved factors that affect spending that might have a common effect across disease

conditions (e.g., income, demographics, insurance, prices, and population health, as well as inefficiencies,

market power, and structural changes in the health systems).

The second contribution is that we are able to use our proxy for innovation to provide a unique estimate of

the contribution of innovation on spending growth. We show that around 18 percent of spending growth

is attributable to new innovations. This is likely a lower bound on the true share of spending growth

attributable to innovation for a couple of reasons. First, there are arguably technological advances that

are common across conditions (e.g., MRIs and other diagnostic technology), which will be removed with

the inclusion of year-specific dummy variables. Second, using cost-effectiveness studies as a proxy for

innovation is imperfect, potentially leading to attenuation bias lowering the magnitude of the estimated

contribution of innovation to spending, relative to the actual contribution.

Given the relatively limited time horizon and changes in the cost-effectiveness database over time, it is

not possible to examine whether the role of technology in affecting spending is increasing or decreasing

over time, as is analyzed in Smith et al. (2022).
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7. Conclusion

Our paper provides new supporting evidence for the broadly held view that medical innovation is a key

driver of spending growth. Applying a unique approach to investigate this question, we find that those

conditions where more cost-effectiveness studies are conducted experience significantly more spending

growth. We find that our proxy for innovation accounts for around 18 percent of real growth in spending

per capita, which is likely a lower bound for the contribution of innovation on spending.

This result has important implications for measurement and welfare, as it suggests that a substantial

portion of the spending growth is driven by new technologies that might improve treatment outcomes,

but which also drive spending higher. This finding suggests that to better understand productivity and

welfare generated by the health sector, it will be important to quantify both the welfare benefits and

costs from new medical technologies.
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8. Appendix

8.1. Growing Sample Size in CEAR Data and Normalization of the Number of Studies

Table A1 provides some basic descriptive statistics of key variables for the years 2005, 2010, and 2015.

The first column shows the distribution of the 5-year growth rate. The the second column shows the

average of the number of studies. The third column shows the average number of spillover studies.

The spending growth slows down considerably over this time period, which is a point noted previously

in Chandra et al. (2013), Dunn et al. (2016), and Cutler et al. (2019), as well as others. The other

notable feature is that the number of studies reported changes considerably over time, with more studies

observed in recent years of the sample.

The growth in sample size has little effect on the main results, as the analysis focuses on the relative

growth across condition categories.

Table A1. Descriptive Statistics on the Growth Rates and Number of Studies By Year

Five-Year Growth Rate Num. of Studies Num. of Spillover Studies

2005

mean 0.183 1.496 1.339

sd 0.276 3.432 1.913

p10 -0.124 0 0

p90 0.491 5 3.250

2010

mean 0.113 4.142 3.705

sd 0.211 9.361 5.897

p10 -0.111 0 0

p90 0.363 12 7.900

2015

mean 0.104 6.876 6.407

sd 0.259 14.69 8.865

p10 -0.119 0 0

p90 0.446 19 13

Notes: This table shows descriptive statistics for the key variables of analysis across three years, 2005, 2010 and 2015. These 
estimates remove the outlier growth rates that exceed 200 percent over a five year period. The figure shows several patterns: 
(1) there is a large degree of variation across all of the key variables. The mean growth rate in spending is positive across all 
years, but there is great variation within any year. The table also shows that the growth rate is positive but declining relative 
to 2005. The number of studies is increasing over this time period, primarily due to the growth in the number of observations 
in the CEAR database, but the key estimates are not dependent on the growth in observations over time, as they include year 
fixed-effects.
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8.1.1. Demographic Control Variable

One variable that may be unique to each condition includes demographic factors such as age and sex.

For instance, the aging of the population may have a larger effect on circulatory conditions, relative

to conditions related to pregnancy. Adding an age variable directly into our regression model for

each condition is not possible because there would be too many covariates (e.g., average population

age interacted with each condition category). Because adding an age variable would yield excessive

covariates, we apply a methodology that attempts to capture the growth in spending for each condition

solely due to changes in the age-sex composition of the population.

Specifically, we use the Medical Expenditure Panel Survey (MEPS) data, which has detailed information

on spending by disease condition. We divide the population into age-sex buckets (e.g., 0–18 and female;

0–18 and male; 19-–40 and female; 19–40 and male, etc). Next, we calculate the average spending by

CCS medical condition for each age-sex category over the entire period from 2000 to 2019. Although

the MEPS sample size is relatively small, with just 30,000 individuals each year, to construct our control

variable, we are able to average over 19 years of data, obtaining a relatively large sample. Importantly,

the spending by CCS is averaged over all years of data, so it does not vary over time. Next, we calculate

the share of the population in each age-sex bucket in each year. Finally, we combine average spending

by age-sex-CCS category with the share of the population in each age-sex category across years by

constructing a population-weighted average of spending in each year. More precisely, we multiply the

population share in each demographic bucket in each year by the average spending by CCS for each

demographic bucket. This produces an estimate of spending by disease and year, where the change

in spending is entirely driven by the change in the population shares. Using age-sex demographics

aggregated across conditions, we find that spending growth increases by 9.5 percent over the period

from 2000–2015 solely due to demographic changes.
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Table A2. Regression of 5-Year Spending Growth Rates on Counts of the Number of Studies

and Studies in Related Categories: Full Sample

Model Description Baseline No Demo. Controls Cont. & Trend IV Weighted

Single Proxy

Spend Spend Spend Spend Spend Spend

Log(Num Studies+1) 0.0218∗∗ 0.0191∗∗ 0.0240∗∗ 0.0127 0.0571∗∗∗ 0.0207∗∗

(0.00992) (0.00961) (0.0111) (0.00971) (0.0178) (0.00985)

Observations 3385 3385 3385 3385 3385 3385

Adjusted R2 0.018 0.016 0.108 0.199 . 0.019

Two Proxies

Log(Num Studies+1) 0.0206∗∗ 0.0171∗ 0.0258∗∗ 0.0144∗∗∗ 0.0545∗∗∗ 0.0197∗∗

(0.00977) (0.00942) (0.0115) (0.00469) (0.0172) (0.00972)

Other Log(Num 0.0233∗ 0.0189∗ 0.0193 0.0169∗∗∗ 0.0205∗ 0.0230∗

Studies+1) (0.0119) (0.0111) (0.0140) (0.00643) (0.0121) (0.0118)

Observations 3385 3385 3385 3385 3385 3385

Adjusted R2 0.023 0.020 0.110 0.200 0.003 0.024

Single Proxy - Normalized

Log(Num Studies+1) 0.0214∗∗ 0.0190∗∗ 0.0249∗∗ 0.0145∗ 0.0372∗∗∗ 0.0204∗∗

(0.00860) (0.00836) (0.00964) (0.00809) (0.0125) (0.00856)

Observations 3385 3385 3385 3385 3385 3385

Adjusted R2 0.020 0.018 0.111 0.200 0.014 0.021

Two Proxies - Normalized

Log(Num Studies+1) 0.0204∗∗ 0.0171∗∗ 0.0276∗∗∗ 0.0169∗∗∗ 0.0349∗∗∗ 0.0197∗∗

(0.00850) (0.00821) (0.00992) (0.00414) (0.0126) (0.00848)

Other Log(Num 0.0243∗∗ 0.0198∗∗ 0.0245∗ 0.0213∗∗∗ 0.0234∗∗ 0.0239∗∗

Studies+1) (0.0104) (0.00969) (0.0127) (0.00572) (0.0104) (0.0103)

Observations 3385 3385 3385 3385 3385 3385

Adjusted R2 0.028 0.024 0.115 0.203 0.023 0.029

Notes: The table shows results from regressions of real spending growth per capita on proxies of innovation based on the 
counts of the number of studies. The regression covers the full sample period from 2000 to 2017, including the discontinuity 
created by the change in ICD9 to ICD10 coding in 2015. All regressions include year fixed-effects. The columns differ by 
the covariates included in the specification, with a description in the top column. The baseline specification includes the 
demographic covariate, second column excludes the demographic covariate, the third column includes additional controls, 
and the fourth column includes additional controls and the initial 3-year growth rate of the condition. The fifth column 
applies an IV estimation, where the IV is the average QALY from cost-effectiveness studies over the past 5 years. The 
sixth column is the baseline model where the regression is weighted by the log of the average spending. The specification 
also differs by panel. The first panel includes a single proxy for innovation and the second panel includes two proxies. The 
last two panels repeat the first two panels, but the number of studies is normalized across years. Standard errors are in 
parentheses and are clustered by CCS Condition Category.



29

8.1.2. Additional Regression Results

Table A3. Regression of 5-Year Spending Growth Rates on QALYs

Model Description Baseline No Demo. Controls Cont. & Trend Weighted

Avg QALY

Avg. QALY Change 0.0385∗∗ 0.0385∗∗ 0.0242 -0.00302 0.0385∗∗

(0.0183) (0.0183) (0.0164) (0.0164) (0.0180)

Other Log(Num 0.0251∗∗ 0.0251∗∗ 0.0156 0.0149 0.0244∗∗

Studies+1) (0.0124) (0.0116) (0.0136) (0.0119) (0.0123)

Observations 2868 2868 2868 2868 2868

Adjusted R2 0.025 0.025 0.115 0.244 0.027

Total QALY

Tot. QALY Change 0.00883∗∗∗ 0.00878∗∗∗ 0.00616∗∗∗ 0.000536 0.00874∗∗∗

(0.00223) (0.00225) (0.00236) (0.00247) (0.00223)

Other Log(Num 0.0226∗ 0.0220∗ 0.0166 0.0151 0.0219∗

Studies+1) (0.0121) (0.0114) (0.0138) (0.0119) (0.0120)

Observations 2868 2868 2868 2868 2868

Adjusted R2 0.034 0.035 0.119 0.244 0.037

Notes: The table shows results from regressions of real spending growth per capita on proxies of innovation based on QALYs 
from the CEAR database. All regressions include year fixed-effects. The columns differ by the covariates included in the 
specification, with a description in the top column. The baseline specification includes the demographic covariate, second 
column excludes the demographic covariate, the third column includes additional controls, and the fourth column includes 
additional controls and the initial 3-year growth rate of the condition. The fifth column is the baseline model where the 
regression is weighted by the log of the average spending. The specification also differs by panel. The first panel includes a 
single proxy for innovation and the second panel includes two proxies. The last two panels repeat the first two panels, but the 
number of studies is normalized across years. Standard errors are in parentheses and are clustered by CCS Condition Category.
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9. Decomposition of Spending Growth Into Treated

Prevalence and Spending-per-case

In this section we explore using spending per case and treated prevalence as outcome variables. Table

A4 presents the results where spending per case is the outcome, while Table A5 presents the results

where treated prevalence is the outcome. We see almost no effect on the spending per case. For treated

prevalence, we see some positive and significant impacts, but these are not as robust as the main results

using total spending growth. Tables A6 and A7 repeat these analyses using the incremental cost and

QALY estimates as regressors. One notable finding is that the average cost variable constructed from

the CEAR data is highly correlated with the spending per case in the HCSA data. Otherwise, we find

few significant impacts, except on the amount of spillover studies.
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Table A4. Regression of 5-Year Spending Per Case Growth Rates on Counts of the Number

of Studies and Studies in Related Categories

Model Description Baseline No Demo. Controls Cont. & Trend IV Weighted

Single Proxy

Per Case Spend Per Case Spend Per Case Spend Per Case Spend Per Case Spend Per Case Spend

Log(Num Studies+1) 0.00402 -0.00225 0.0125 0.00952 0.0318∗ 0.00384

(0.00824) (0.00833) (0.0105) (0.00970) (0.0176) (0.00807)

Observations 2868 2868 2868 2868 2868 2868

Adjusted R2 0.005 0.000 0.017 0.021 -0.003 0.006

Two Proxies

Log(Num Studies+1) 0.00382 -0.00207 0.0118 0.00881 0.0314∗ 0.00369

(0.00828) (0.00855) (0.0109) (0.0101) (0.0176) (0.00808)

Other Log(Num 0.00571 -0.00186 -0.00621 -0.00680 0.00412 0.00527

Studies+1) (0.00987) (0.00891) (0.00960) (0.00967) (0.00973) (0.00936)

Observations 2868 2868 2868 2868 2868 2868

Adjusted R2 0.005 -0.000 0.017 0.021 -0.003 0.006

Single Proxy - Normalized

Log(Num Studies+1) 0.00367 -0.00142 0.0110 0.00833 0.0124 0.00362

(0.00687) (0.00695) (0.00871) (0.00795) (0.0122) (0.00671)

Observations 2868 2868 2868 2868 2868 2868

Adjusted R2 0.005 0.000 0.017 0.021 0.004 0.006

Two Proxies - Normalized

Log(Num Studies+1) 0.00349 -0.00146 0.0108 0.00805 0.0118 0.00350

(0.00687) (0.00711) (0.00910) (0.00830) (0.0121) (0.00670)

Other Log(Num 0.00738 0.000563 -0.00154 -0.00237 0.00705 0.00680

Studies+1) (0.00842) (0.00749) (0.00825) (0.00813) (0.00831) (0.00797)

Observations 2868 2868 2868 2868 2868 2868

Adjusted R2 0.005 -0.000 0.017 0.021 0.004 0.006

Notes: The table shows results from regressions of real spending growth per case on proxies of innovation based on the counts 
of the number of studies. All regressions include year fixed-effects. The columns differ by the covariates included in the 
specification, with a description in the top column. The baseline specification includes the demographic covariate, second 
column excludes the demographic covariate, the third column includes additional controls, and the fourth column includes 
additional controls and the initial 3-year growth rate of the condition. The fifth column applies an IV estimation, where the IV 
is the average QALY from cost-effectiveness studies over the past 5 years. The sixth column is the baseline model where the 
regression is weighted by the log of the average spending. The specification also differs by panel. The first panel includes a 
single proxy for innovation and the second panel includes two proxies. The last two panels repeat the first two panels, but the 
number of studies is normalized across years. Standard errors are in parentheses and are clustered by CCS Condition Category.
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Table A5. Regression of 5-Year Treated Prevalence Growth Rates on Counts of the Number

of Studies and Studies in Related Categories

Model Description Baseline No Demo. Controls Cont. & Trend IV Weighted

Single Proxy

Treated Prev. Treated Prev. Treated Prev. Treated Prev. Treated Prev. Treated Prev.

Log(Num Studies+1) 0.0127∗ 0.0166∗∗ 0.00442 -0.00314 0.0169 0.0123∗

(0.00722) (0.00707) (0.00800) (0.00752) (0.0134) (0.00710)

Observations 2868 2868 2868 2868 2868 2868

Adjusted R2 0.013 0.011 0.093 0.129 0.013 0.014

Two Proxies

Log(Num Studies+1) 0.0117 0.0137∗ 0.00634 -0.00136 0.0142 0.0115

(0.00731) (0.00717) (0.00814) (0.00759) (0.0144) (0.00720)

Other Log(Num 0.0286∗∗∗ 0.0312∗∗∗ 0.0185 0.0170∗ 0.0285∗∗∗ 0.0272∗∗∗

Studies+1) (0.0107) (0.00973) (0.0118) (0.00986) (0.0108) (0.0103)

Observations 2868 2868 2868 2868 2868 2868

Adjusted R2 0.020 0.020 0.094 0.130 0.020 0.021

Single Proxy - Normalized

Log(Num Studies+1) 0.0114∗ 0.0146∗∗ 0.00522 -0.00165 0.0139 0.0110∗

(0.00637) (0.00627) (0.00705) (0.00653) (0.0123) (0.00625)

Observations 2868 2868 2868 2868 2868 2868

Adjusted R2 0.014 0.011 0.093 0.129 0.014 0.015

Two Proxies - Normalized

Log(Num Studies+1) 0.0107∗ 0.0122∗ 0.00748 0.000417 0.0117 0.0106∗

(0.00645) (0.00635) (0.00719) (0.00666) (0.0132) (0.00633)

Other Log(Num 0.0265∗∗∗ 0.0285∗∗∗ 0.0199∗∗ 0.0178∗∗ 0.0265∗∗∗ 0.0253∗∗∗

Studies+1) (0.00931) (0.00840) (0.0100) (0.00818) (0.00929) (0.00890)

Observations 2868 2868 2868 2868 2868 2868

Adjusted R2 0.022 0.022 0.096 0.131 0.022 0.023

Notes: The table shows results from regressions of treated prevalence per capita on proxies of innovation based on the counts 
of the number of studies. All regressions include year fixed-effects. The columns differ by the covariates included in the 
specification, with a description in the top column. The baseline specification includes the demographic covariate, second 
column excludes the demographic covariate, the third column includes additional controls, and the fourth column includes 
additional controls and the initial 3-year growth rate of the condition. The fifth column applies an IV estimation, where the IV 
is the average QALY from cost-effectiveness studies over the past 5 years. The sixth column is the baseline model where the 
regression is weighted by the log of the average spending. The specification also differs by panel. The first panel includes a 
single proxy for innovation and the second panel includes two proxies. The last two panels repeat the first two panels, but the 
number of studies is normalized across years. Standard errors are in parentheses and are clustered by CCS Condition Category.
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Table A6. Regression of Spending Per Case 5-Year Growth Rate on Cost, QALY and Proxies

of Innovation

(1) (2) (3) (4) (5) (6)

Log(Num Studies+1) 0.00382 0.00250 -0.00235

(0.00828) (0.00804) (0.00718)

Other Log(Num 0.00571 0.00595 0.00580 0.00474 0.00424 0.00398

Studies+1) (0.00987) (0.00977) (0.00981) (0.00970) (0.00951) (0.00950)

Avg. Cost Change 0.0659∗∗ -0.00879

(0.0274) (0.0239)

Avg. QALY Change 0.0110 0.00966 0.00742 -0.0144 -0.0141

(0.0146) (0.0140) (0.0139) (0.0162) (0.0161)

Tot. QALY Change 0.00624∗∗ 0.00513∗∗

(0.00286) (0.00255)

Total Cost Change 0.0122∗∗∗

(0.00467)

Observations 2868 2868 2868 2868 2868 2868

Adjusted R2 0.005 0.005 0.005 0.007 0.008 0.010

Notes: The table shows results from regressions of real spending growth per case on proxies of innovation. In addition 
to the proxies of innovation based on study counts, the table reports alternative proxies based on changes in QALYs 
and costs of innovations, as reported in studies in the CEAR database. Standard errors are in parentheses and are 
clustered by CCS Condition Category.
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Table A7. Regression of Treated Prevalence 5-Year Growth Rate on Cost, QALY and Proxies

of Innovation

(1) (2) (3) (4) (5) (6)

Log(Num Studies+1) 0.0117 0.0101 0.0103

(0.00731) (0.00710) (0.00734)

Other Log(Num 0.0286∗∗∗ 0.0293∗∗∗ 0.0287∗∗∗ 0.0288∗∗∗ 0.0289∗∗∗ 0.0288∗∗∗

Studies+1) (0.0107) (0.0107) (0.0107) (0.0108) (0.0108) (0.0109)

Avg. Cost Change -0.00348 0.00248

(0.0176) (0.0217)

Avg. QALY Change 0.0172 0.0118 0.0119 0.0108 0.0109

(0.0131) (0.0125) (0.0125) (0.0155) (0.0155)

Tot. QALY Change 0.00155 0.00140

(0.00282) (0.00278)

Total Cost Change 0.000868

(0.00312)

Observations 2868 2868 2868 2868 2868 2868

Adjusted R2 0.020 0.019 0.020 0.020 0.019 0.019

Notes: The table shows results from regressions of treated prevalence growth per capita on proxies of innovation. 
In addition to the proxies of innovation based on study counts, the table reports alternative proxies based on changes 
in QALYs and costs of innovations, as reported in studies in the CEAR database. Standard errors are in parentheses and 
are clustered by CCS Condition Category.
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